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Abstract

Microarchitectural attacks and reverse-engineering efforts rely on
inferring the cache state of cache lines.While high-resolution timers
traditionally enable this, such timers are increasingly restricted or
unavailable to unprivileged users on modern ARM64 systems.

We introduce a fuzzing-based methodology to automatically dis-
cover instruction sequences that leak cache state into architectural
state—without timing measurements. Our proof-of-concept, Exfil-
State, uses differential testing, F-score ranking, and covert-channel
verification to identify architectural side channels on ARM64 CPUs.
Across 160 devices with 37 microarchitectures—including smart-
phones, laptops, and cloud servers—ExfilState uncovers 5 undocu-
mented side channels, 2 of which are reliably and widely exploitable.

We demonstrate their practical impact with a timer-free Spectre
variant, a cache-based AES key-recovery attack, and a novel defense
mechanism that aborts sensitive algorithms on eviction of victim
cache lines. Our findings show that architectural side channels are
both real and exploitable, even in environments without timers,
broadening the attack surface on modern ARM64 platforms.

CCS Concepts

• Security and privacy → Side-channel analysis and counter-
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1 Introduction

Modern processors operate on two levels of state: the architec-
tural state, directly defined by the instruction set architecture (ISA),
and the microarchitectural state, comprising internal optimizations
such as caches and branch predictors. Traditionally, the separation
between these two states ensures that microarchitectural optimiza-
tions do not interfere with the predictable behavior of software
execution as defined by the ISA. However, the microarchitecture is
not entirely invisible. For instance, variations in cache states can
affect instruction execution times, which, when measured using a
high-resolution timer, can leak information about the microarchi-
tectural state. If the microarchitectural state depends on a secret,
an attacker can exploit such a timing measurement to infer the se-
cret using, e.g., a cache attack such as Flush+Reload [77] or Prime+
Probe [48]. Notably, transient-execution attacks such as Spectre [33]
also rely on such side channels to transmit secrets encoded in the
microarchitectural state to the architectural state [9].

Due to such attacks, access to high-resolution timers has been
restricted [37, 38, 57, 58] or are entirely unavailable for unprivileged
users [24, 31]. On ARM, the ISA provides the CNTEL0ACR control reg-
ister restricting access to high-resolution counters for unprivileged
users [3]. The unavailability of high-resolution counters on many
devices, and the diversity of microarchitectures in the ARM ecosys-
tem, make it challenging to build reliable and portable timer-based
attacks, such as cache attacks or Spectre attacks [24]. In addition to
impeding attacks, it hinders microarchitectural research in general.
For example, distinguishing cache hits from misses is a generic
primitive often used for reverse engineering microarchitectural
properties [11, 25, 30, 49, 55, 66, 67, 81].

In this paper, we ask the following research question:

Can we automatically discover instruction sequences that leak
microarchitectural cache state into architectural state, without relying
on timing measurements?

We answer this question in the affirmative by developing a novel
fuzzing methodology to automatically discover architectural side
channels: instruction sequences that make cache state visible at
the architectural level (e.g., register values or exceptions) without
relying on timing measurement. Our approach leverages differen-
tial testing to identify discrepancies in architectural states arising
from variations in cache states. By systematically crafting distinct
cache states through controlled memory operations, i.e., memory
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accesses and cache flushes, we execute identical instruction se-
quences across these states and observe the resulting architectural
outputs. Disparities in these outputs indicate potential architectural
side channels. We focus on cache states, as the cache is a widely-
used microarchitectural element in microarchitectural research and
attacks [33, 38, 48]. Moreover, the cache provides reliable means for
modifying its state, i.e., via accessing and flushing data. We focus
on instruction sequences that interact with the memory subsystem,
as these are more likely to be influenced by cache states and other
microarchitectural elements.

To manage the large number of findings and prioritize those with
significant security implications, we use the F-score to evaluate
the severity of identified leaks. This metric is commonly used for
evaluating side-channel primitives [23, 56, 71–73]. We randomly
cache or flush a memory address and calculate the F-score based on
the precision and recall of detecting the cache state—i.e., whether
the respective cache line resides in the cache—with the discovered
primitive. A high F-score indicates that we do not accidentally mea-
sure unrelated events, such as frequency scaling [69] or speculative
execution [33], but effects that are either caused by the cache state
or correlate with the cache state. We rank the results based on their
reliability for determining the cache state.

We additionally incorporate a verification stage in our method-
ology, recognizing that some identified side channels may not man-
ifest in real-world scenarios due to factors like prefetching and
speculative execution. In this stage, we evaluate the stability of an
automatically synthesized covert channel. For this covert channel,
we transmit 128 bytes via the cache and measure the bit-error rate
of the transmission. This systematic evaluation enables early rejec-
tion of non-deterministic results and false positives, streamlining
the analysis process to focus on the most reliable side channels.

We implement our proposed methodology in a proof-of-concept
tool, ExfilState (Exfiltrate microarchitectural state), that auto-
mates the detection, evaluation, and verification of cache state
leakage on ARM64. ExfilState continuously repeats 4 stages: case
generation and difference discovery, correlation analysis and reduc-
tion, verification, and clustering. This structured approach ensures
comprehensive coverage and systematic analysis of potential side
channels. Although the methodology is generic, we implement
ExfilState for ARM64, as it is used in a wide range of devices,
including smartphones, laptops, and servers, and the market share
is growing rapidly. In contrast to x86, high-resolution timers are not
available on all CPUs [24] or are restricted to privileged code [3].
Moreover, the reduced number of instructions interacting with
memory enables a more systematic evaluation and better coverage.

We demonstrate the efficacy of ExfilState across 160 devices
with 37 unique microarchitectures, resulting in the discovery of 5
novel side channels. Our devices include low- to high-end smart-
phones, laptops, desktops, and cloud servers. We find 2 architectural
side channels that work reliably on most ARM CPUs and 3 side
channels that work on a subset of the microarchitectures. All side
channels work in unprivileged native and virtualized environments.
A manual analysis of the 2 widely available side channels shows
the two main effects leading to them are exclusive loads and stores,
and incoherence of data and instruction cache. The first category,
Lx+Sx, exploits “incorrect” usage of exclusive store and load in-
structions, resulting in architectural “error codes” depending on the

cache state. The second category, Store+Ret, exploits a microarchi-
tectural race condition when executing overwritten code. Because
ARM does not guarantee automatic coherence between data and
instruction cache, the new instruction is only executed when the
cache line was not in the cache before. While these side channels
exist on most tested CPUs, they often require subtle changes in the
instruction sequence, justifying the use of a fuzzing-based approach
for discovering them.

To show real-world applicability, we demonstrate 3 case studies.
For comparability with other side channels, we mount a classical
attack on AES T-tables on multiple devices and microarchitectures,
including Cortex-A72 (Raspberry Pi 4/Marvell Armada 7040) and
Cortex-A720 (Pixel 9). Our results show nearly perfect key recovery,
outperforming Flush+Reload on the Marvell Armada 7040 due to
low timer resolution for unprivileged attackers. We demonstrate
that architectural side channels also enable defenses against cache
attacks by redirecting control flow on cache misses. We demon-
strate this allows programs to be protected similarly to x86-based
defenses relying on Intel TSX [22] or CPU exceptions [72]. Finally,
we use the architectural side channels to build a Spectral attack [80],
i.e., a Spectre attack with architectural leakage. Our Spectral attack,
based on Spectre-PHT and Lx+Sx, leaks 11 457.9 B/s, outperform-
ing existing Spectre attacks on x86. These results emphasize the
versatility and robustness of our approach in identifying practical
side-channel primitives across various microarchitectures.
Contributions. The main contributions of this work are:

(1) We introduce a fuzzing-based approach to systematically
identify instruction sequences causing cache state leakage
to the architectural state without timing measurement.

(2) We present ExfilState, a proof-of-concept implementation
for ARM64. ExfilState identifies 5 previously unknown
architectural side channels related to cache state leakage on
36 unique microarchitectures, including the AWS Graviton4
and the Qualcomm Snapdragon X Elite.

(3) We utilize the F-score of the side-channel primitive and an
automatically synthesized covert channel to rank and clus-
ter detected leaks, prioritizing side channels based on their
exploitability and impact. The covert-channel-based verifi-
cation stage ensures real-world applicability of our findings.

(4) We demonstrate the efficacy of our architectural side chan-
nels in two attacks, showing timer-less Spectre and AES key
recovery on different devices. Additionally, we use the side
channels for demonstrating a defense on AES T-tables im-
plementations that aborts the encryption if a cache miss is
detected, similar to existing defenses on x86 [22, 72].

Outline. The remainder of this paper is organized as follows.
Section 2 provides the necessary background. Section 3 outlines
our methodology. Section 4 presents our implementation, Exfil-
State. Section 5 evaluates ExfilState and summarizes results of
our fuzzing campaign. Section 6 examines the 5 side channels in
detail. In Section 7 we illustrate their use through three case stud-
ies. Section 8 considers mitigations, limitations, and related work.
Finally, Section 9 concludes the paper.
Responsible Disclosure. We reported our findings to Arm. Arm
acknowledged our findings but does not plan any mitigations.
Availability. ExfilState and all related artifacts are open-source
and available at: https://github.com/cispa/ExfilState-artifacts.
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2 Background

In this section, we provide background on ARM64 CPU internals,
cache attacks, and fuzzing methodologies.

2.1 CPU Internals

Modern ARM64 CPUs rely on hierarchical memory and cache struc-
tures and optimization features to bridge the performance gap
between the processor and main memory. They typically feature
separate L1 instruction and data caches and shared or private L2
caches [74, 75]. Some high-end cores also employ 3 levels of caches,
where the last level is shared [75]. The higher-end ARM64 CPUs,
similar to x86, also employ advanced features such as speculative
execution, branch prediction, cache prefetching, and out-of-order
execution to enhance throughput and reduce latency [75]. The
specific features vary between cores and manufacturers.
Memory Load and Store. As ARM64 is a reduced instruction set
computer (RISC) architecture, there is a limited number of instruc-
tions that can load from and store to memory. Thus, in contrast to
x86, most instructions cannot use a memory address as an operand
but require a register. ARM64 additionally provides specific in-
structions for concurrency control, including locked and atomic
load/store instructions (e.g., LDAXR, STLXR).
Memory Coherence. x86 enforces strong memory coherence
through Total Store Order (TSO), ensuring writes are immediately
visible across cores [42]. In contrast, ARM64 uses a weaker model
requiring explicit memory barriers (e.g., DMB, DSB, ISB) for or-
dering, which necessitates more careful handling in multithreaded
software but enables greater efficiency and power savings [3].

2.2 Cache Attacks

Cache attacks exploit timing differences resulting from cache hits
versus misses to leak memory-access patterns of victim processes.
Two well-established techniques are Flush+Reload [77] and Prime+
Probe [48]. While these techniques were first shown on x86, they
have also been demonstrated on ARM CPUs [38]. Flush+Reload
relies on shared memory between attacker and victim, using the
DC CIVAC instruction on ARM to evict cache lines, then measuring
reload latency to infer victim activity. Prime+Probe does not require
shared memory; it involves filling cache sets (prime), scheduling
the victim, and subsequently measuring access times (probe) to the
attacker’s own addresses to detect if victim activities have evicted
the attacker’s cached data.
Timers. Traditionally, accurate timing measurements are critical
for cache attacks. Attackers typically use high-resolution timers
such as the CPU’s timestamp counter (e.g., PMCCNTR_EL0) or loop-
based timers if direct access to hardware timers is restricted [38].
Restricting timer precision can raise the bar for attacks, but prior
work noted that this alone may not be a sufficient defense [40].
Amplification. In particular, attackers can amplify timing differ-
ences, for example by duplicating the microarchitectural state [32]
or exploiting cache eviction strategies [51, 61].
Architectural Side Channels. On x86, specific architectural fea-
tures, such as the mwait instruction used for optimized power man-
agement [80] or transactional memory aborts triggered via Intel

TSX [13], introduce architecturally-observable side-channel leak-
age. However, these techniques are specific to a subset of x86 CPUs,
and comparable primitives are uncommon in ARM64 CPUs.1

2.3 Hardware Fuzzing

Fuzzing is an automated technique to uncover vulnerabilities by
providing complex systems with unexpected or randomized inputs.
Differential Fuzzing. Differential fuzzing is helpful in identifying
subtle vulnerabilities in complex systems and protocols [41]. In
differential fuzzing, multiple implementations of a specification
are tested against each other with identical inputs, identifying dis-
crepancies that indicate potential vulnerabilities or implementation
errors. Recently, differential fuzzing has been used to find vulnera-
bilities in complex CPUs [46, 63].
CPU Fuzzing and Validation. CPU fuzzing extends general
fuzzing principles specifically to microarchitectural and architec-
tural components of processors. It involves generating random-
ized or crafted instruction sequences designed to trigger undocu-
mented behaviors, implementation errors, or subtle timing anom-
alies within CPUs. By systematically probing the CPU with varied
inputs, CPU fuzzing can reveal architectural mismatches [7, 45, 46,
59, 63], transient execution vulnerabilities [26, 43, 44], and microar-
chitectural side channels [12, 20, 28, 70, 71]. Advanced CPU fuzzing
methods often utilize coverage-guided approaches or differential
analysis across multiple hardware implementations or simulation
models to efficiently detect CPU-specific vulnerabilities [59, 60, 63].

CPU bug testing, using fuzzing and other design validation tech-
niques [36], can be performed pre-silicon or post-silicon. Pre-silicon
testing is slow and limited in execution breadth but enables early de-
tection with fine-grained observability of corner cases. Post-silicon
testing runs at full speed, exercises entire software stacks and re-
alistic workloads, and often reveals bugs in end-to-end systems,
albeit with reduced internal visibility.

3 Methodology: Leaking Cache State

In this section, we present our 4-stage methodology for automati-
cally discovering instruction sequences that leak microarchitectural
state (specifically, cache state) via architectural state, without re-
lying on timing measurements. We define the leakage and threat
models (Section 3.1) and the process of generating instruction se-
quences and differential testing (S1, Section 3.2). For filtering out
non-deterministic or noisy differences, we employ a correlation or-
acle and reduction procedure based on the F-score (S2, Section 3.3).
In a verification stage, we automatically assess the real-world appli-
cability by synthesizing a covert channel (S3, Section 3.4). Finally,
we propose a post-fuzzing clustering stage that minimizes the over-
head of manual inspection (S4, Section 3.5).

3.1 Leakage and Threat Model

Microarchitectural components such as caches, branch predictors,
and TLBs operate below the abstraction provided by the ISA. Under
normal conditions, these components are not expected to influence
architectural state, i.e., the state observable by software through

1ARMv9 supports the optional transactional memory extension (TME) (FEAT_TME),
but we have not seen it in any off-the-shelf hardware today.
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Figure 1: Overview of ExfilState. For computing the F-score,

ExfilState randomly picks one of the two discovered cache

states 5000 times. The respective cache state instruction se-

quence sets the microarchitectural cache state. ExfilState

runs the generated instruction sequence, records the architec-

tural state, and compares it to the reference state. Depending

on the outcome, a true/false positive/negative is recorded.

registers, memory, and architectural flags. However, this abstrac-
tion is imperfect. Certain instructions may, under some conditions,
reveal the state of internal components through architecturally
visible interfaces (e.g., registers or exceptions).

In this work, we target leakage stemming from cache state. We
define an architectural leak as any observable difference in the
architectural state solely caused by earlier changes in the cache
state. These differences may manifest in general-purpose registers,
memory values, or status flags. We assume an attacker with the
ability to execute unprivileged code but without access to timing
measurements or performance counters. We assume no hardware
bugs (e.g., Meltdown-type transient-execution vulnerabilities [9])
and no control over speculative execution beyond standard, well-
known Spectre gadgets applicable to most CPUs [33, 39].

While our methodology is generalizable to other microarchitec-
tural components, we focus on the cache for two reasons. First, the
cache is one of the most widely studied sources of microarchitec-
tural leakage, and second, its state can be reliably manipulated from
user space using standard instructions.

3.2 S1: Sequence Generation & Difference

Discovery

We rely on a differential testing framework as illustrated in Figure 1.
For each candidate instruction sequence, we prepare two execution
contexts that differ only in their cache state. One version ensures
that specific memory addresses are cached, while the other flushes
(or evicts) those addresses using instructions such as DC CIVAC.
After preparing the cache state, the candidate sequence is executed,
and the final architectural state is recorded.

The two runs are then compared. If the architectural state differs
between the two executions, we mark the sequence as a potential

leaker. Since the cache state is the only variable factor, any resulting
difference in register or memory content indicates that microarchi-
tectural state has influenced architectural behavior. The comparison
covers all general-purpose registers and all memory. In case of an
exception, e.g., an illegal instruction exception, it also covers all
the signal handling metadata provided by the kernel. We normalize
the execution context to ensure deterministic behavior: the same
candidate sequence, the same memory mappings, and the same
initial register contents. This ensures that observed differences are
only due to the modified cache state.
Instruction Sequence Generation. Instruction sequences are
generated randomly. The generator produces syntactically valid
sequences with constraints designed to target the cache subsystem.
In particular, we restrict the generation to sequences of instruc-
tions that interact with memory, including loads, stores, and atomic
operations. Arithmetic instructions, which do not touch the mem-
ory hierarchy, are excluded to reduce noise and increase search
efficiency. This design choice is based on the hypothesis that only
memory-accessing instructions can trigger observable effects from
changes in cache state. To evaluate this hypothesis, we conducted a
comparative experiment where we ran fuzzing campaigns with and
without memory instructions. As we speculated, only sequences
containing memory accesses resulted in architectural differences.
The tested microarchitectures show 148 (Cortex-A53, A73, A72) to
198 (Apple M1) memory instructions. The complete set of memory
instructions supported by the Apple M1 is provided in Listing 6,
located in Appendix A.

3.3 S2: Correlation Oracle & Reduction

We find that not all discovered architectural differences are deter-
ministic or correlate with the microarchitectural states. Therefore,
we employ a statistical scoring oracle based on the F-score, which
measures the correlation between the microarchitectural and archi-
tectural states. We rely on the F-score as it is commonly used for
evaluating side channels [23, 56, 71–73].

Figure 1 shows how the candidate sequence is executed multiple
times under both cache conditions and how the resulting archi-
tectural states are compared against a fixed reference. From these
runs, we calculate the number of true positives, false positives,
false negatives, and the resulting F-score. A sequence with a high
F-score reliably produces distinct architectural states depending on
the cache condition, while sequences with low scores are discarded.
Reduction. To reduce the complexity of our findings, we try
to reduce the instruction sequences automatically. We iteratively
replace each instruction with a NOP instruction as long as the F-
score does not drop below a defined threshold. Any reduction step
that reduces the measured correlation below a fixed threshold is
considered a failure and is reverted. This mechanism is similar to
the methods used for optimizing cache eviction sets, and it can
further benefit from similar optimizations [68]. We reduce the two
cache states by testing whether each cache line’s cache state affects
the architectural difference. For each cache line, we test both cached
and non-cached states. If running the candidate sequence under
one of these two unified cache states still gives an architectural
difference and a high F-score, the reduction step was successful.
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3.4 S3: Verification
Although the F-score effectively filters noise, it does not guarantee
real-world exploitability. In particular, some sequences may appear
to leak due to hardware prefetchers or speculative execution, rather
than a direct dependency on cache state. Disabling prefetchers is
not always possible, especially on mobile and embedded platforms.

To address this, we introduce a verification stage based on a
covert channel scenario. In this setup, a sender encodes a message
using a single cache line, and a receiver decodes the message via the
architectural side channel. Decoding successfully across repeated
runs demonstrates that the sequence relies on deliberate cache
state modulation and can be used as a building block for attacks.
By measuring the accuracy of message recovery and comparing it
against a baseline, we can distinguish actual cache-state-dependent
sequences from artifacts introduced by internal CPU mechanisms.
Sequences that pass this test, i.e., have a bit-error rate below a
chosen threshold, are verified and included in our final results.
Additionally, the bit-error rate can be used to rank the side channels.

3.5 S4: Clustering
Many high-scoring sequences turn out to be semantically equiva-
lent, in that they reveal the same underlying root cause or produce
the same architectural outcome. To reduce manual analysis effort,
we group sequences into clusters based on their architectural effects.
Clustering is automatically performed post-fuzzing on a number
of key attributes for each reproducer. We mainly use the type of
architectural difference, e.g., register or memory difference. We also
consider exception types, in case of exceptions, and the number of
architectural differences. This process reveals common leakage pat-
terns and instruction sequences, and allows prioritizing novel and
unexplored sequences. It also facilitates manual analysis of unique
leakage mechanisms by reducing the records requiring inspection.

4 Implementation: ExfilState

In this section, we discuss ExfilState, our proof-of-concept imple-
mentation of the methodology in Section 3. We implement Exfil-
State’s 3 fuzzing stages in C and Assembly: sequence generation
and difference discovery (S1, Section 4.1), correlation oracle and re-
duction (S2, Section 4.2), and verification (S3, Section 4.3). We use
Python for the final post-fuzzing clustering stage (S4, Section 4.4).

4.1 S1: Case Generation & Difference Discovery

In this section, we discuss the instruction-sequence generation,
memory mappings and register state generation, and how Exfil-
State tests and enumerates microarchitectural states.
Instruction Sequence. As discussed in Section 3.2, we restrict
the instruction sequences to only memory-interacting instructions.
Note that these also include non-load-store instructions such as
branches, which also interact withmemory. Since the tested systems
implement a variety of ARM extensions, we opt for dynamically
enumerating all valid memory-interacting instructions. We can
enumerate all such instructions by testing if the instruction emits a
page fault in any encoding. Therefore, we instantiate each opcode
parsed from the ARM specification [4] and check for a page fault,

i.e., SIGSEGV or SIGBUS. We test 20 random encodings of each in-
struction. If any of these encodings emits a page fault, we use the
instruction in the sequence generation.

Given this list of memory-interacting opcodes, we randomly
initialize a list of page-faulting instructions for a user-supplied
sequence length. We restrict the number of registers used in the en-
coding of the generated instruction so that dependencies between
the instructions are likely. We evaluate the impact of the number
of registers and sequence length in an ablation study (Section 5.3).
Architectural State: Memory & Fuzzing Values. The archi-
tectural state is directly connected to the instruction sequence, as
the instructions use the values set in the registers to interact with
memory. Because we aim to find architectural cache state leakage,
providing valid and “interesting” memory pointers via the registers
is important. We emit pointers to different kinds of memory, i.e.,
read-only, read-write, and read-write-execute mapped memory, to
cover all potential memory configurations available for user-space
programs. We specifically supply pointers to page-boundary mem-
ory locations, as we hypothesize that these trigger edge-cases in the
microarchitecture. We randomly set registers to valid instruction
encodings, too, as we also map pages read-write-execute, allowing
ExfilState to execute self-modifying code. We fill the mapped
memory with the same set of 8-byte pointers and values, allowing
ExfilState to generate pointer-chasing sequences.
Microarchitectural State. We represent the microarchitectural
state as a bit vector where each bit represents the cache state, i.e.,
cached and non-cached, for each cache line pointed to by any of the
limited number of registers. We set all other cache lines to the non-
cached state by flushing them, as keeping other memory cached
could potentially evict the cache lines that are actually used.

Setting the cache state of the tracked cache lines is done by
selectively flushing or loading a cache line, depending on the state,
as shown in Figure 1. We thereby issue the memory accesses and
flushes that set the state of the tracked cache lines directly before
executing the random candidate sequence. Thus, cache lines are
not evicted by unrelated code. We shield the random candidate
sequence from this cache-state-setting sequence with a full barrier,
i.e., DSB SY plus ISB [4].

4.2 S2: Correlation Oracle & Reduction

Next, we discuss details of using the F-score-based correlation ora-
cle to evaluate the stability of an architectural difference and the
reduction of sequence length and cache state.
Correlation Oracle. We implement the correlation oracle as de-
scribed in Section 3.3. ExfilState takes 5000 measurements, and
randomly uses one of the two cache state sequences. It compares
the result against the previously captured architectural state and
increments counters for true positives, false positives, and false
negatives as shown in Figure 1. ExfilState discards architectural
differences that lead to an F-score below 80%.
Reduction. For non-discarded sequences, ExfilState applies the
reductions described in Section 3.3. For reduction of the randomly-
generated candidate sequences, we use standard NOP instructions
and the implemented correlation oracle to detect incorrect reduc-
tions. For each differing bit in the two cache states, ExfilState
tries both configurations, i.e., both cache states with the respective
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bit 0 (non-cached) and 1 (cached). If one of the two unified cache
states still gives a high F-score, the reduction step is successful.

4.3 S3: Verification
This section discusses the verification stage of ExfilState. We
synthesize a cache covert channel that uses the discovered gadget to
covertly transmit data via the cache. While we use a covert channel
to automatically infer exploitability, other leakage settings, such as
Spectral (cf. Section 7.3), could verify real-world applicability.

ExfilState automatically identifies which cache line is the one
that architecturally leaks microarchitectural state by diffing the two
cache states. This cache line is then used as the target cache line for
the covert channel. The sender transfers 128 B of random data over
the target cache line by encoding each bit in the microarchitectural
state of the target cache line. The receiver runs the discovered in-
struction sequence and compares the resulting architectural state to
a reference result for a cached cache line. If the result is equal to the
reference result, the receiver stores a 1; otherwise, a 0. ExfilState
calculates and logs the bit-error rate.

4.4 S4: Clustering
The final stage of ExfilState is the post-fuzzing clustering of
logged discovered side channels. We mainly rely on the differences
between the recorded architectural states for the two possible states
of the target cache line. We record the differences (e.g., memory,
register, or signal address differences) and take that as the first key
for the clustering classes. Further, we add the signal numbers of
both results as another key. For each logged reproducer, we extract
these keys and cluster the reproducers by the combined key.

5 Evaluation

In this section, we evaluate the efficacy of ExfilState in discover-
ing architectural side channels. Over the course of 326 device-hours,
ExfilState discovers 13 116 raw side-channel primitive reproduc-
ers. We further assess the clustering step’s ability to reduce the
number to 32 classes. Ultimately, this results in 5 unique architec-
tural side channels. Finally, we evaluate discovery performance over
time, and conduct an ablation study of critical fuzzing parameters.

5.1 Experimental Setup

Hardware and Targets. We execute our experiments on 160 de-
vices encompassing 37 uniquemicroarchitectures, includingARMv8
and ARMv9 CPUs. Devices include smartphones, laptops, servers,
and single-board computers. A detailed list of devices can be found
in Table 4 in Appendix D. We distribute fuzzing tasks across all
machines for a total of 2021 CPU hours. This is performed primarily
on a phone farm run by Google, incorporating 136 unique models
of Android phones. Additionally, we use ARM CPUs on the Google
and AWS cloud, a local lab with 2 laptops, 10 single-board comput-
ers, 7 phones, and 2 Macs to add coverage and facilitate targeted
testing for discovered side channels. For devices with hybrid CPUs,
we ensure ExfilState runs on at least one core of every core type.
Fuzzing Configuration. We configure ExfilState with varying
fuzzing parameters, primarily the instruction sequence length and
number of registers involved, as explored in the ablation study
(Section 5.3). Unless stated otherwise, we use a default configuration

of 8 instructions and 4 registers. As seed, we use a combination of on-
device Unixmilliseconds and the CPU core tomake the seed random
per device and core. The raw outputs of ExfilState undergo a
clustering stage (cf. Section 3.5) that groups similar reproducers and
reduces redundancy. We report on both raw output and clustered
side channel categories.

5.2 Side-Channel Discovery

Discovering architectural side channels is the primary goal of Ex-
filState. We can measure its efficacy by evaluating the clustering
process, i.e., minimization of results, the number of unique side
channels, their complexity, and the time it takes to discover side
channels. We analyze each discovered side channel in Section 6.
Clustering. From 13 116 raw reproducers, the clustering stage
condenses the output into 32 distinct classes within 13min, signif-
icantly reducing manual triage effort. Manual inspection of class
representatives reveals 5 previously unknown architectural side
channels with distinct leakage mechanisms.
Categorization. We categorize the 5 discovered side channels
into two classes: exception-free and exception-dependent. 2 side
channels manifest without triggering faults, while 3 consistently
rely on CPU exceptions, such as segmentation faults, to leak infor-
mation. Table 1 summarizes the prevalence of the 5 side channels
across microarchitectures. In total, 36 of 37 microarchitectures are
affected by at least one discovered side channel. The 2 exception-
free side channels Lx+Sx and Store+Ret affect 22 and 31 of 37
tested microarchitectures, respectively. The 3 exception-dependent
side channels are slightly less versatile, as they require the applica-
tion to handle or suppress exceptions, which is often only feasible
in low-level languages such as C. ExfilState only discovers the
3 exception-dependent side channels on 6 microarchitectures. 2
microarchitectures are affected by Pointer-Chase and 4 by Split-
Store and Translation-Race (cf. Table 1). However, while Exfil-
State discovers the exception-dependent side channels on these
microarchitectures, all are also affected by at least one exception-
free side channel.
Side-channel Complexity. While our configuration uses 8 in-
structions and 4 registers, the discovered side channels have been
reduced to, on average, 2.31 instructions and 1.02 registers that
differ in the cache state. The minimum sequence length for all dis-
covered side channels is 2, whereas the most complex side channel,
Lx+Sx on Apple’s Icestorm microarchitecture, requires sequences
of 5 instructions. Interestingly, some side channels require a certain
number of instructions on certain microarchitectures. Listing 7 in
Appendix C shows an example of Lx+Sx, where the short sequence
works on Cortex-A73, and only the longer sequence makes it work
on Apple Avalanche.
Discovery Time. We evaluate how long ExfilState needs to
run to discover all side channels. Figure 2 shows the percentage
of unique discovered side channels over time. The plot line shows
the average over all microarchitectures, while the band shows the
standard error when averaging over the microarchitectures. 90 %
of the side channels are discovered within the first 75min, while
discovering all side channels takes 7 h on average.

Table 2 lists the time to discovery for each of the 5 side chan-
nels, again averaged over all microarchitectures. Split-Store and
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Table 1: Overview of which tested microarchitecture is affected by which side channel. ✓ indicates a bit-error rate of at most 25 %
in the covert channel verification, while ∼ indicates a higher rate. Exponents show the complexity of the discovered sequence

in the form of the sequence length. The last row shows if a microarchitecture is affected by any of the 5 side channels.
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Figure 2: Percentage of unique discovered side channels over

time, averaged over microarchitectures. The band shows the

standard error. On average, 90 % of the side channels are dis-

covered within 75min, and all within 7 h.

Table 2: Average time to discovery, standard error, and

number of reproducers for each side channel averaged and

summed up over all microarchitectures.

Side Channel AVG time to discovery (s) Stderr (s) Reproducers

Lx+Sx 3821 1520 2160
Store+Ret 526 194 4059
Pointer-Chase 94 67 135
Translation-Race 2 1 3997
Split-Store 2 1 1637

Translation-Race are discovered within seconds, while Pointer-
Chase and Store+Ret take minutes. Lx+Sx is the slowest to find,
with an average time to discovery of around 1 h. These results sug-
gest that short, targeted fuzzing campaigns can effectively identify
architectural side channels without requiring prolonged execution
or complex instruction sequences.

5.3 Ablation Study

We perform an ablation study on two key fuzzing parameters: se-
quence length and register count. Each configuration is tested in
isolation to assess its impact on the number of discovered side chan-
nels and the number of logged side-channel primitives. For all of
the configurations, we run ExfilState 6 times for 20min, totaling
2 h fuzzing time per configuration. We evaluate the percentage of

side channels discovered and the number of reproducers logged
for each configuration. We calculate the percentage of discovered
side channels by dividing the number of discovered unique side
channels by the number of discoverable side channels on the mi-
croarchitecture. The results are summarized in Figure 3, where the
bar plots show the number of reproducers and the line plot shows
the cumulative percentage of unique side channels discovered.
Sequence Length. For the number of generated random instruc-
tions (sequence length), we test lengths of 1 to 16 while keeping the
number of registers fixed at 4. Instruction sequences shorter than
two instructions fail to trigger side effects and thus do not expose
side channels. Discovery performance improves with longer se-
quences, peaking around 8 instructions. Beyond that, performance
deteriorates. We attribute this to more involved sequence reduction
and performance overhead due to longer sequences.
Register Count. With register count varying from 1 to 8 (fixed
sequence length of 8), we observe optimal discovery at 2 registers.
Increasing the number of registers further decreases the number of
reproducers. We assume the reason is the increased complexity in
cache state exploration, leading to diminishing returns.

6 Discovered Side Channels

In this section, we describe each of the 5 discovered side channels
in detail, analyze their root causes, and evaluate cross-core avail-
ability, speed, error rate, and resolution. We describe the 2 widely
available and versatile exception-free side channels we call Lx+Sx
and Store+Ret in Section 6.1 and Section 6.2, respectively. The
exception-dependent side channels are described in Section 6.3.

6.1 Lx+Sx

In this section, we describe the first of the 2 widely available and
exception-free side channels. We dub this side channel Lx+Sx, as all
variants of Lx+Sx are based on a combination of an exclusive load
and a following exclusive store. All variants exploit “constrained
unpredictable” [3] or implementation-specific details [2]. Unlike
regular stores, exclusive stores, such as STXR, encode a third general-
purpose register in the instruction. This status register encodes
whether the store succeeded (‘0’) or failed (‘1’). Exclusive stores are
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Figure 3: Ablation study results comparing the impact of sequence length and used registers on the number of logged reproducers

(bars) and the cumulative rate of discovered side channels (line). Error bars indicate the standard error over 6 runs.

normally combined with an exclusive load (LDXR) and a comparison
to implement hardware-backed mutexes [2]. In a typical setup, the
exclusive store only succeeds if the block of memory is marked for
exclusive access (via an exclusive load), i.e., no other store to this
address has happened in the meantime [3].

Listing 1 shows the base variant of Lx+Sx. The exclusive store
is the one leaking the microarchitectural state, i.e., cached or non-
cached, of the victim cache line architecturally. Register w0, the
status register of the exclusive store, is ‘0’ (=success) after execution
if the victim cache line is in the cache and ‘1’ (=failure) otherwise.

The Cortex-A72 is not affected by the base variant of Lx+Sx,
but by a different variant where the exclusive load (LDXR) has to
load an unrelated cache line. For both variants, the manual does not
document that the behavior depends on the cache state of involved
cache lines. This is also not an obvious behavior and thus unlikely
to be discovered manually without a fuzzer.

6.1.1 Exploitation: RSB-based Cache State Re-encoding. As Lx+Sx
uses exclusive stores to leak the cache state of a victim cache line—
i.e., whether it resides in the cache or not—mounting Lx+Sx directly
on a cache line would require write access. As this is in general not
given for a targeted cache attack, we introduce CSC (cache state
copier), a primitive to copy the state of a cache line from a read-only
victim cache line to an attacker-controlled cache line. CSC uses the
idea of “weird gates” [16, 32] to “copy” the microarchitectural state
with transient execution, but it relies on return-based mispredic-
tion [27, 39], which does not require mistraining. Horowitz et al.
[27] also rely on such a return-based misprediction on Intel CPUs
to build a NOT gate.

With CSC, we transiently access the victim cache line and access
the attacker-controlled cache line with a dependency on the value
loaded from the victim cache line. If the victim cache line is in the
cache, the data arrives fast, and the second memory access can
be transiently performed, so the attacker-controlled cache line is
cached. If the victim cache line is not in the cache, the transient
execution window ends before the victim cache line data arrives.
Because of the dependency, the attacker-controlled cache line is
not loaded. This ensures that the attacker-controlled cache line
has the victim cache line state after executing our transient-copy
gadget. After transiently “copying” over the victim cache line state,
we mount Lx+Sx directly on the attacker-controlled and, therefore,
writable cache line.

6.1.2 Analysis. We hypothesize that the core of the Lx+Sx side
channel is the interaction between exclusive load-store pairs and
the cache coherence protocol. ARMv8-A exclusive access primitives

comprise two instructions: LDXR, which performs a load and estab-
lishes an exclusive reservation on a memory address, and STXR,
which attempts to store a value to that address only if the exclusive
reservation is still valid. The ARM documentation for synchroniza-
tion primitives [2] suggests that the monitoring for exclusive loads
and stores involving shareable memory can be implemented using
the cache coherence protocol. Even though not documented, the
behavior of the exclusive store (STXR) fundamentally depends on
the internal state of the microarchitecture—particularly the cache
state of the accessed line. Our experiments show that the store only
succeeds if the cache coherence state of the cache line is not Shared,
indicating that the cache coherence protocol is indeed used for the
implementation. Importantly, LDXR does not necessarily upgrade
the cache line to an Exclusive or Modified state in the cache coher-
ence protocol. Instead, it behaves as a regular load, and the line may
remain in the Shared state even after execution of the instruction.

The STXR instruction, in turn, attempts a conditional store. If the
reservation is still valid, i.e., no other writes to the address were
observed by the exclusivity monitor, it proceeds with the store.
However, if the cache line is not already in a writable state (e.g.,
not in Exclusive or Modified), the operation may incur a coherence
miss. In such a case, the store must first invalidate copies in other
cores or upgrade the cache line to a writable state, which introduces
latency and increases the likelihood of the store failing. While some
microarchitectures may attempt to speculatively acquire exclusive
access after an LDXR to improve the success rate of the subsequent
STXR, such behavior is neither architecturally guaranteed nor doc-
umented in a portable way. This implementation detail is crucial
for the effectiveness of the Lx+Sx side channel.
Other Variants. The Cortex-A72 is only affected by the unrelated-
load variant of Lx+Sx, i.e., the exclusive load and store target dif-
ferent addresses. This behavior is explicitly documented to be un-
predictable: “If the target VA of a StoreExcl is different from the
VA of the preceding LoadExcl instruction in the same thread of
execution, behavior can be CONSTRAINED UNPREDICTABLE” [3].
Interestingly, the behavior is not unpredictable but depends on the
cache state of the address used as store target. No other core is
affected by this variant. Some microarchitectures, such as Apple
Avalanche or Cortex-A55, need more complex sequences to trigger
Lx+Sx (cf. Table 1 and Listing 7 in Appendix C). Thus, while Lx+Sx
is straightforward on some devices, it requires tailored sequences
on others, which ExfilState uncovers.
Cross-core Exploitability. Depending on the specific microar-
chitecture, Lx+Sx is not limited to the same core, as our manual
analysis of the side channel shows. On the Cortex-A73 (base vari-
ant), the side channel works across cores and cross-core-type to
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1 LDXR x1, [victim]
2 STXR w0, x2, [victim]

Listing 1: The base sequence for Lx+Sx. The exclusive store

only succeeds when the victim cache line is in the cache,

reflected as status in the w0 register.

a Cortex-A53. Other variants vary, e.g., a more complex variant
on the A53 works only cross-same-core-type. We attribute these
differences to the cache configurations of the different CPUs.
Speed, Error Rate & Resolution. We test speed, error rate, and
resolution of Lx+Sx on the Cortex-A72 and A73 via a simple covert
channel over one cache line. On the Cortex-A72, Lx+Sx runs with
277 kbit/s and a bit-error rate of 0 %. This gives a resolution of
3.61 µs. On the Cortex-A76, we see 1038 kbit/s and a bit-error rate
of 0.03 %, resulting in a resolution of 0.96 µs.
Unaffected Implementations. On unaffected implementations
(cf. Table 1), e.g., Nvidia Carmel or Huawei Kunpeng Pro, the default
behavior, independent of the cache state, is that the store succeeds.
This is expected from an optimized version of these instructions.
However, we still find rare occurrences where the store fails on
both unaffected microarchitectures. These occurrences increase
slightly on the Huawei Kunpeng Pro when padding Lx+Sx with a
flush instruction on the victim cache line.

6.2 Store+Ret

In this section, we give details on Store+Ret, the second widely-
applicable exception-free side channel. Store+Ret is available on
31 of 37 microarchitectures.

Store+Ret is lined out in Listing 2. It uses two distinct instruc-
tion sequences: the store plus return sequence and a victim-to-be-
overwritten instruction sequence. The store rewrites the instruc-
tions at the second instruction sequence. The return instruction
is used to jump to the second rewritten instruction sequence. We
find that affected CPUs execute stale instructions when the victim
rewritten cache line is in the data cache and the new updated in-
structions when the cache line is not in the data cache. ExfilState
finds this side channel, as it uses read-write-execute memory map-
pings, which can include valid instructions, such as NOPs. If the
store instruction corrupts this valid instruction by overwriting it
with an illegal instruction, the CPU executes a different number of
instructions, visible via the signal address (si_addr).

6.2.1 Exception-free Store+Ret. We can manually craft this gad-
get to be exception-free and control-flow preserving by using only
valid instructions and emitting a branch back to the original code.
Listing 2 shows the final form of Store+Ret. We use MOV instruc-
tions to selectively encode ‘0’ (non-cached) or ‘1’ (cached) into the
architectural register x0. MOV x0, #0 is only visible to the IFU if
the victim cache line is not in the data cache. A branch register (BR)
instruction is used to jump back to the original code flow with the
leakage encoded in x0.

6.2.2 Exploitation. As with Lx+Sx, we cannot mount Store+Ret
directly on a victim cache line, as we need read-write-execute access
to the victim cache line. Thus, we also use CSC (cf. Section 6.1.1)

1 ; w0 encodes 'MOV x3, #0', w1 encodes 'MOV x3, #1'.
2 ; w2 encodes 'BR =come_back_here'.
3 STR w1, [victim] ; Victim cache line sets x3=1 and returns.
4 STR w2, [victim, #4]
5 IC IVAC victim
6 STR w0, [victim] ; Replace code at victim to set x3=0.
7 RET victim ; Jump to overwritten (potentially stale) code.
8 come_back_here: ; x3 is 1 if victim is cached, 0 if not.

Listing 2: Store+Ret: The original code at victim sets x3
to ‘1’ and returns. Replacing it with code that sets x3 to ‘0’

causes the old code (‘1’) to run if the cache line was in the

data cache and the new code (‘0’) to run if the cache line was

not in the data cache, leaking the cache state architecturally.

to copy the microarchitectural state of a victim cache line to an
attacker-controlled writable and executable cache line.

6.2.3 Analysis. In this section, we analyze the root cause and im-
portant properties of Store+Ret, such as the interplay with the
I-cache and whether other jump instructions work.
Root Cause. Store+Ret exploits the incoherence between data
and instruction cache on ARM CPUs. On x86, stores to executable
memory ranges are guaranteed to always be visible to data loads [42].
However, on ARM CPUs, there is no such guarantee. Thus, instruc-
tion and data cache become incoherent on stores to such executable
regions. The programmer has to use cachemaintenance instructions
to sync both caches [3].

Store+Ret exploits a race in the microarchitectural implemen-
tation on affected CPUs where newly written (jitted) instructions
are only visible architecturally when the written cache line is not
in the data cache. When the victim cache line is in the instruction
cache, we only see stale instructions executed. This is expected, as
cache coherence is not guaranteed, so the instruction fetch unit
(IFU) fetches instructions from the instruction cache as long as they
are not evicted. That means we need to invalidate the victim cache
line from the instruction cache to set up Store+Ret.
Other Jumps. While Store+Ret sounds like it should be gener-
ically exploitable, i.e., with other types of jumps or without any
jump, we find that Store+Ret exploits the misprediction property
of RET instructions (cf. Section 6.1.1).

First, we test if overwriting in-stream instructions works, ba-
sically concatenating both instruction sequences. This does not
trigger architectural differences, and only stale instructions are
executed. We suspect this is because the IFU fetches instructions in
blocks of entire cache lines (64 bytes) [1]. Therefore, the write can-
not be visible to the IFU because the store and patched instruction
are in the same cache line and therefore already fetched when the
store occurs. This can be fixed by padding the patched instructions
with NOPs. We find that 300 NOPs reliably only give the new updated
instructions on the Cortex-A76. Further, we find that Store+Ret
can be exploited in-stream, i.e., without any jump, by padding with
200 NOPs on the Cortex-A76.

Next, we test if other types of branches work, too, as ExfilState
discovers Store+Ret only with RET instructions, with just a few ex-
ceptions, e.g., AppleM1/M2, where it finds Store+Retwith indirect
branches (BR). On the Cortex-A76, we find that replacing the RET in-
struction with direct or indirect jumps does not trigger architectural
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differences. We suspect this is due to the implementation-specific
speculative behavior of RET instructions. While direct and indirect
jumps are trained always to take the jump in our gadget, custom
returns always misspeculate. This triggers a difference in the mi-
croarchitectural race that is exploited by Store+Ret. With direct
and indirect jumps, the IFU can predict and fetch the victim cache
line, executing stale (valid) instructions. For returns, the IFU mis-
predicts and fetches the wrong instructions. Then the pipeline must
be flushed and the correct victim cache lines fetched from mem-
ory. We suspect that at this point the write with the new updated
instructions has progressed enough to be forwarded to the IFU.
Fences. Adding a Data Synchronization Barrier (DSB SY) between
the store and return instruction reliably removes the effect of exe-
cuting stale instructions. However, a barrier in combination with
direct or indirect jumps does not lead to updated instructions being
executed, as the IFU operates ahead of the barrier.
Cross-core Leakage. Store+Retworks across cores on the Cortex-
A76. However, in contrast to Lx+Sx, Store+Ret is only exploitable
across the same CPU-core type on the Cortex-A76.
Speed, Error Rate & Resolution. We measure a transfer rate
of 473 kbit/s and a bit-error rate of 0.03 % on the Cortex-A76. This
gives a resolution of 2.12 µs.
Other variants. Similar to Lx+Sx, there are multiple variants to
trigger Store+Ret on different microarchitectures (cf. Table 1).
Again, microarchitectures such as the Cortex-A55 or Oryon need
more complex sequences to trigger different architectural results.
These include loads to unrelated addresses or more complex store
operations, such as store pair (STP). ExfilState uncovers variants
of Store+Ret for nearly all microarchitectures.
Unaffected implementations. Again, we test unaffected imple-
mentations (cf. Table 1) for their default behavior. We find that
the Cortex-A72 always executes the stale instructions. We suspect
this is because the Cortex-A72 does not implement the suspected
forwarding to the I-cache. Note that this does not mean that the
unaffected implementations are entirely unaffected—there might
still be sequences that could distinguish cache hits from misses,
even if ExfilState does not find any.

6.3 Exception-dependent Side Channels

In this section, we discuss the 3 exception-dependent side channels.
We hypothesize that all 3 side channels exploit race conditions
in the address translation logic when handling unaligned page-
boundary-crossing address translations. ARM CPUs split unaligned
memory accesses into multiple loads/stores. For example, when a
non-single-copy 8-byte store is executed to the last 4 bytes of a
page, the store is split into two 4-byte stores, and each is executed
independently. Further, address translation may fail on either side
of the page: “An operation that is not single-copy atomic above
the byte level can abort on any memory access that it makes and
can abort on more than one access. This means that an unaligned
access that occurs across a page boundary can generate an abort
on either side of the page boundary” [3]. Thus, the 8-byte store can
write partially to memory when one of the pages is not mapped.

6.3.1 Pointer-Chase. The first exception-dependent side channel,
Pointer-Chase, exploits the fact that accesses can fail on more

1 LDR x0, [victim] ; victim contains 0x3fff
2 LDR x1, [x0]

Listing 3: Pointer-Chase: The second load fails on 0x3fff
for cached victim and on 0x4000 for uncached victim.

1 LDR x0, [victim]
2 STR x0, [page-boundary-ptr]

Listing 4: Translation-Race: If the victim is cached, the

first partial store succeeds before the second triggers a fault,

resulting in bytes written when the victim is cached.

1 LDRB x0, [victim]
2 STR x1, [victim]

Listing 5: Split-Store: If the victim is cached, the first partial

store completes before the second faults, resulting in bytes

written if the victim is cached.

than one address. Listing 3 shows Pointer-Chase. The first mem-
ory access instruction loads a pointer to a page boundary where
both pages are not mapped (e.g., address 0x3fff) from the victim
cache line. Depending on the cache state of the victim, we see a
segmentation fault on 0x3fff (victim cached) or 0x4000 (victim
non-cached) in user space. We suspect this is due to a microarchi-
tectural race condition where the microarchitecture spends more
time on the address translation depending on the victim cache state.

6.3.2 Translation-Race. Translation-Race exploits that stores
are split and can be partially committed. Translation-Race is
depicted in Listing 4. The first load is fast or slow depending on
the victim cache state. The dependent store is split into two par-
tial stores because the target points to unaligned page-boundary
crossing memory where the first page is mapped, while the second
one is not. When the victim cache line is in the cache and the store
value arrives fast, the first partial store succeeds before the address
translation fails on the second page. Therefore, the partial store is
committed, and we can architecturally see that the victim is cached.
When the victim cache line is not in the cache, the faulting address
translation flushes the pipeline before the partial store is committed.
Translation-Race essentially races a load on the victim address
against the address translation of the unaligned pointer.

6.3.3 Split-Store. Split-Store (Listing 5) exploits that store op-
erations use a store buffer and can update cached parts before
checking page permissions. The victim address spans a page border,
where only the first page is mapped. Loading one byte succeeds,
but storing 4 bytes fails, as the target address is partially unmapped.
Still, the store to the first byte succeeds if the victim cache line is
already cached, as we suspect that the store can update this part
in the store buffer. Thus, the first byte of the victim data is only
modified if the victim is cached.

6.3.4 Analysis. In this section, we analyze key properties such as
cross-core leakage for the 3 exception-dependent side channels.
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Cross-core Leakage. Translation-Race and Split-Store on the
Cortex-A73 work only across the same CPU-core type. Pointer-
Chase does not work across cores on the Cortex-A72.
Speed, Error Rate & Resolution. For Pointer-Chase (Cortex-
A72), we measure a transfer rate of 11 kbit/s (1 bit every 90 µs) and
a bit-error rate of 0.15 %. For Translation-Race (Cortex-A73), we
measure 102 kbit/s (9.77 µs) and 0.12%. For Split-Store (Cortex-
A73), we measure 147 kbit/s (6.79 µs) and 0.01 %.
Exploitation. Translation-Race is the only side channel we
discover that can be directly mounted on a cache line. This is be-
cause we only load a value from the victim cache line and store
that, independent of its value. Pointer-Chase cannot be mounted
directly, as the page-boundary pointer needs to be specially crafted.
We try to craft a sequence of arithmetic instructions that trans-
forms an arbitrary victim value into a vulnerable pointer; however,
adding dependent instructions between the loads breaks the side
channel. Split-Store can again not be mounted directly, as the
victim pointer needs to be at the page boundary. However, for both
variants, the RSB-based transient copy gadget CSC (cf. Section 6.1.1)
can be used to re-encode and leak a victim cache line.
Unaffected Implementations. Again, we test the behavior of
other microarchitectures. For Pointer-Chase, other microarchi-
tectures always emit the fault on the first page, i.e., 0x3fff. For
Translation-Race and Split-Store, the partial store never suc-
ceeds on other microarchitectures.

7 Case Studies

In this section, we use the discovered side channels to mount attacks
on AES, mitigate these attacks with the same side channels, and
craft a fast architectural Spectre attack.

7.1 AES T-table Attack (Lx+Sx & Store+Ret)

In this section, we demonstrate a practical AES T-table attack lever-
aging Lx+Sx and Store+Ret as architectural side channels. Our
attack uses the T-table implementation of OpenSSL 3.5.0 (April
2025), which is essentially unchanged since 1.0.1e, a version com-
monly used for benchmarking side channels [18, 19, 21, 52].
Setup. As the main system for our case study, we use an ARM64
Cortex-A72 CPU with 4 cores and 8GB RAM, running Ubuntu 18.04
as operating system. Additionally, we test the case study onmultiple
devices: Cortex-A720 (Pixel 9 with Android 15), A715 (Pixel 8a with
Android 15), A72 (Raspberry Pi 4 with Ubuntu 24.04), and A76 (Pixel
6a with Android 14 and Raspberry Pi 5 with Ubuntu 24.04). For the
Cortex-A76, we use Store+Ret instead of Lx+Sx.

The attack scenario is modeled after traditional Flush+Reload
techniques but replaces timing measurements with Lx+Sx. How-
ever, as Lx+Sx requires a writable cache line, we cannot directly
apply it to the AES T-table. Thus, we rely on CSC to copy the cache
state to an attacker-controlled writable cache line and mount Lx+Sx
on this cache line. Our attack implementation is inspired by the
baseline provided by Gruss et al. [21], with modifications tailored
specifically to exploit Lx+Sx.
Evaluation. We execute our AES T-table attack 100 times. With
Lx+Sx, we reliably distinguish cache hits from misses at the ar-
chitectural level, eliminating timing-related noise. In 99 % of cases,
we fully recover the AES key without errors. Our method’s key
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Figure 4: AES T-table cache-access pattern on an ARM64

Cortex-A72 with Lx+Sx (left) and Flush+Reload (right).

recovery takes 764ms (±0.83, 𝑛=100) on average. While Flush+
Reload is slightly faster with 607ms (±0.86, 𝑛=100) on this CPU
under identical conditions, we only get the correct key in 39% of
the runs. The main reason is the limited timer resolution. On this
SoC (Marvell Armada 7040), the best timer has a resolution of only
40 ns, making classical timing-based cache attacks such as Flush+
Reload unreliable. We additionally evaluate the attack under stress
by running the stress utility on 1 and 2 cores, respectively. As
expected, this only has a negligible impact on Lx+Sx, showing that
the side channel is robust in presence of noise. Figure 4 shows the
typical heatmap for the T-table accesses, with the expected diagonal
when the first key byte is ‘0’.

For the other devices, we confirm that Lx+Sx (Cortex-A720, A715,
and A72) and Store+Ret (Cortex-A76) both give a clear diagonal,
indicating that the side-channel attack works well. Overall, this
case study underscores the practical implications of Lx+Sx and
Store+Ret, highlighting their efficacy in real-world attacks, such
as on cryptographic key extraction and real-world devices.

7.2 AES T-table Mitigation (Lx+Sx)

In this section, we use Lx+Sx to harden the OpenSSL AES T-table im-
plementation against the attack discussed in Section 7.1. We preload
the entire T-tables into the cache and use Lx+Sx when accessing
the T-tables to abort the algorithm if the cache line is not in the
cache. Our mitigation joins previous mitigations relying on keeping
the T-tables cached. These mitigations range from preloading the
T-tables into the cache and keeping them cached [8, 22, 47, 64, 72],
to using transactional memory to ensure execution only terminates
on preloaded and still cached T-tables [22], to using performance-
counter overflows and other interfaces to abort encryption when
under attack [54, 72].
Setup. We again evaluate this Lx+Sx-based T-tables mitigation on
the Cortex-A72 of a Marvell Armada 7040, the same microarchitec-
ture and SoC as in the previous case study. We make sure that the
entire T-tables are in the cache by accessing each of the 128 cache
lines before the encryption. We shield each access to the T-tables in
the encryption with a probing step based on Lx+Sx. If this probing
step finds that the cache line is not cached anymore, we stop the
encryption and report that an attack was discovered.
Evaluation. We run 1 000 000 AES encryptions and choose ran-
domly for each if the attack from the previous case study is active.
To account for camouflaged attacks [35], we only attack a single
cache line, as the detection is built on the cache-line level either
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way. We count true positives (attack executed and discovered), false
positives (no attack but reported), and false negatives (attack exe-
cuted but not discovered). Based on these numbers, we calculate
that our mitigation runs with a precision of 99.68 % and a recall of
99.92 %. Combined, this gives an F-score of 99.8 %. This shows that
the discovered architectural side channels can not only be used for
attacks but for defenses as well.

7.3 Spectral: Architectural Spectre (Lx+Sx)

In this section, we present an ARM64-variant of the Spectral attack
introduced by Zhang et al. [80]. Spectral is a variant of Spectre-type
attacks, using architectural leakage instead of a traditional timing-
based side channel. We rely on a classical Spectre-PHT attack [33]
but use Lx+Sx instead of conventional timing methods. Combi-
nations with other Spectre variants are possible, but we opt for
Spectre-PHT, as this works reliably on a wide range of devices. Our
Spectral attack is the only variant that works on ARM64, as umwait
or similar instructions are unavailable on ARM64 [80]. Spectral on
ARM64 is highly efficient, leaking 11 457.9 B/s (±27.26 , 𝑛=150 000)
on average without errors. This is more than a factor of 7 faster
than the previously fastest Spectre-PHT attack on ARM64 [24].
Threat Model. Consistent with prior work [25, 27, 33, 34, 80], we
assume an attacker with unprivileged code execution. The attacker
lacks architectural timing primitives. This includes high-resolution
primitives, such as access to the PMCCNTR register [38] or a count-
ing thread [57], and coarse-grained timers with microsecond or
lower resolution [38, 58, 61]. As with typical Spectre attacks, we
use shared memory between the attacker and the victim, without
the necessity of hyperthreading [6] or OS-controlled timeouts [80].
For a reproducible and controlled evaluation, we rely on an in-
jected leakage gadget. In contrast to previous work on Spectral
attacks [80], we do not require a bit-wise leakage gadget but can
use traditional byte-wise leakage gadgets [33].
Attack Methodology. Our side channel is a drop-in replacement
for timing side channels, so we can use unmodified Spectre attacks
targeting ARM64 [24] or supporting ARM64 [9]. Since the attacker
controls the encoding buffer, we can directly use Lx+Sx without
CSC. We also do not require calibration, as our side channel’s out-
put is binary. Unlike prior approaches using instructions such as
umwait [80], we need no special gadgets or Spectre variants that
transiently write to memory. Thus, existing Spectre gadgets can be
readily exploited with our variant. Synchronization is straightfor-
ward, as the attacker executes and observes the gadget.
Setup. We use a simple Spectre-PHT attack that leaks out-of-
bounds bytes from an array akin to previous proof-of-concept im-
plementations [9, 24]. For mistraining, we rely on in-place mistrain-
ing [9] and access 10 inbound values for each out-of-bound value.
We use a leak gadget like the original Spectre paper [33], spreading
the leaked value to 256 pages. We use DC CIVAC to flush the array
and Lx+Sx to measure the cache state.
Results. For the evaluation, we use a Cortex-A73 running Ubuntu
20.04.5 LTS. We achieve a leakage rate of 11 457.9 B/s (±27.26 ,
𝑛=150 000) without errors. This is more than a factor of 7 faster
than the previously fastest Spectre-PHT attack on ARM64 [24]. In
fact, this leakage rate outperforms all timing-based Spectre attacks
on x86, too, and is nearly 3 times as fast as the fastest attack (cf.

Schwarzl et al. [58] Table I). Moreover, our Spectral implementation
is more than 50 % faster than the fastest Spectral attack on x86 [80].

8 Discussion

In this section, we discuss mitigations, limitations, and related work.

8.1 Mitigations

Our findings challenge spot mitigations, such as restricting timer
accuracy [24, 29, 31, 37, 38, 57]. However, effective mitigations exist.
Software. Still, in line with other side channels, secrets in programs
can be protected against our side channels by relying on constant-
time programming techniques [5, 50].
Operating System. Our side channels exploit the same leakage
as other cache attacks, differing only in the extraction method.
Thus, mitigations focusing on cache leakage [22, 72] and not on the
extraction method also protect against our side channels. Similarly,
detection methods [35] can also detect our side channels.
Hardware. Even though the side channels are present on nearly all
tested microarchitectures, they are not inherent to the ISA specifica-
tion. As not all microarchitectures are affected by all side channels,
it is possible to implement the microarchitecture so that it does not
suffer from these side channels. Thus, CPU vendors can change
their designs to mitigate the side channels at the hardware level.

8.2 Limitations

Our approach has two main limitations, one inherent to fuzzing-
based techniques, the other an engineering limitation.
Incompleteness. As with all fuzzers, our approach is not com-
plete. Thus, if we do not find an architectural side channel on a CPU,
this does not mean there is none. However, our evaluation (cf. Sec-
tion 5) also shows that on CPUs where we find an architectural
side channel, it typically does not take more than 7 h.
Instruction Limitation. Our current proof-of-concept imple-
mentation is limited to instructions documented in the machine-
readable ISA specification [4]. Thus, in case there are architectural
side channels in custom or undocumented instructions, our fuzzer
cannot find them. However, this is primarily an engineering prob-
lem that can be solved, as also shown in previous work [62, 63].

8.3 Related Work

In this section, we discuss related work on CPU fuzzing, architec-
tural side channels, and architectural CPU vulnerabilities.
Black-box CPU Fuzzing. Early black-box fuzzers, such as Covert
Shotgun [17], used handpicked instructions to uncover covert tim-
ing channels. ABSynthe [20] generalized this by testing the full
ISA for contention. Osiris [71] introduced ISA-aware fuzzing for
non-contention timing channels. BETA [10] added coverage-guided
mutation to accelerate black-box discovery of timing leaks. In con-
trast, our focus is not on timing but on making microarchitectural
state architecturally observable.

Other fuzzers explore speculative execution (Transynther [43],
Revizor [44]), undocumented instructions (Domas [14]), or target-
specific ISAs like RISC-V (RISCover [63]) for data leakage or crashes.
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We, instead, identify architectural exposure of the microarchitec-
tural state. SiliFuzz [59] detects CPU correctness bugs using differ-
ential fuzzing. While occasionally revealing security issues (e.g.,
Reptar [45]), its primary focus is to find defective hardware.
Architectural Side Channels. Yu et al. [78] use exclusive load and
store instructions on Apple M1 to build a cache side channel similar
to Lx+Sx, but exploit eviction of attacker cache lines rather than
direct state leakage. Xu et al. [76] and Van Bulck et al. [65] exploit
page-fault behavior and page-table bits, respectively, for architec-
tural leakage, assuming a privileged attacker. Prime+Abort [13]
uses Intel-only deprecated TSX aborts as an architectural feedback
mechanism. UMWAIT [80] enables cache state monitoring via ar-
chitectural flags, but only for writes and only on recent Intel CPUs.
PMU-Leaker [53] uses hardware counters for leakage, typically
requiring privileged access. Our approach targets EL0, enabling
unprivileged usage on commodity ARM systems.
Architectural CPU Vulnerabilities. Several architectural bugs
have been found recently: ÆPICLeak [7] leaks superqueue con-
tents, Zenbleed [46] leaks registers. CacheWarp [79] exploits stale
cache behavior. GhostWrite [63] enables arbitrary memory writes.
EntrySign [15] undermines CPU integrity via microcode. Unlike
our primitives, these are specific implementation flaws, while we
focus on general architectural exposure mechanisms.

9 Conclusion

We presented a fuzzing-based methodology for discovering archi-
tectural side channels that leak cache state without relying on
timing measurements. The evaluation of our proof-of-concept im-
plementation ExfilState across 160 devices with 37 unique mi-
croarchitectures revealed 5 architectural side channels, including
the widely applicable Lx+Sx and Store+Ret, which exploit exclu-
sive load-store interactions and data/instruction cache incoherence,
respectively. Using the side channels, we demonstrated a timer-
free Spectral attack that outperforms existing Spectre attacks and a
classical AES T-table attack without timers. We also explored the
potential for these architectural side channels to develop defenses
against cache attacks. Our results highlight a previously underex-
plored class of side channels. We believe this work opens up new
directions for both hardware security research and the design of
future mitigations on modern CPUs.
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BLRA, BLR, BRA, BR, RETA, RET, LD1_ADVSIMD_MULT, LD2_ADVSIMD_MULT,

LD3_ADVSIMD_MULT, LD4_ADVSIMD_MULT, ST1_ADVSIMD_MULT, ST2_ADVSIMD_MULT,

ST3_ADVSIMD_MULT, ST4_ADVSIMD_MULT, LD1_ADVSIMD_MULT, LD2_ADVSIMD_MULT,

LD3_ADVSIMD_MULT, LD4_ADVSIMD_MULT, ST1_ADVSIMD_MULT, ST2_ADVSIMD_MULT,

ST3_ADVSIMD_MULT, ST4_ADVSIMD_MULT, LD1R_ADVSIMD, LD1_ADVSIMD_SNGL,

LD2R_ADVSIMD, LD2_ADVSIMD_SNGL, LD3R_ADVSIMD, LD3_ADVSIMD_SNGL, LD4R_ADVSIMD,

LD4_ADVSIMD_SNGL, ST1_ADVSIMD_SNGL, ST2_ADVSIMD_SNGL, ST3_ADVSIMD_SNGL,

ST4_ADVSIMD_SNGL, LD1R_ADVSIMD, LD1_ADVSIMD_SNGL, LD2R_ADVSIMD,

LD2_ADVSIMD_SNGL, LD3R_ADVSIMD, LD3_ADVSIMD_SNGL, LD4R_ADVSIMD,

LD4_ADVSIMD_SNGL, ST1_ADVSIMD_SNGL, ST2_ADVSIMD_SNGL, ST3_ADVSIMD_SNGL,

ST4_ADVSIMD_SNGL, CASB, CASH, CAS, CASP, LDAPURB, LDAPURH, LDAPURSB,

LDAPURSH, LDAPURSW, LDAPUR_GEN, STLURB, STLURH, STLUR_GEN, LDRB_IMM,

LDRH_IMM, LDRSB_IMM, LDRSH_IMM, LDRSW_IMM, LDR_IMM_GEN, LDR_IMM_FPSIMD,

STRB_IMM, STRH_IMM, STR_IMM_GEN, STR_IMM_FPSIMD, LDRB_IMM, LDRH_IMM,

LDRSB_IMM, LDRSH_IMM, LDRSW_IMM, LDR_IMM_GEN, LDR_IMM_FPSIMD, STRB_IMM,

STRH_IMM, STR_IMM_GEN, STR_IMM_FPSIMD, LDRA, LDRB_IMM, LDRH_IMM, LDRSB_IMM,

LDRSH_IMM, LDRSW_IMM, LDR_IMM_GEN, LDR_IMM_FPSIMD, STRB_IMM, STRH_IMM,

STR_IMM_GEN, STR_IMM_FPSIMD, LDRB_REG, LDRH_REG, LDRSB_REG, LDRSH_REG,

LDRSW_REG, LDR_REG_GEN, LDR_REG_FPSIMD, STRB_REG, STRH_REG, STR_REG_GEN,

STR_REG_FPSIMD, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, LDTR, STTRB, STTRH,

STTR, LDURB, LDURH, LDURSB, LDURSH, LDURSW, LDUR_GEN, LDUR_FPSIMD, STURB,

STURH, STUR_GEN, STUR_FPSIMD, LDAXP, LDXP, STLXP, STXP, LDAXRB, LDAXRH,

LDAXR, LDXRB, LDXRH, LDXR, STLXRB, STLXRH, STLXR, STXRB, STXRH, STXR,

LDNP_GEN, LDNP_FPSIMD, STNP_GEN, STNP_FPSIMD, LDARB, LDARH, LDAR, LDLARB,

LDLARH, LDLAR, STLLRB, STLLRH, STLLR, STLRB, STLRH, STLR, LDPSW, LDP_GEN,

LDP_FPSIMD, STP_GEN, STP_FPSIMD, LDPSW, LDP_GEN, LDP_FPSIMD, STP_GEN,

STP_FPSIMD, LDPSW, LDP_GEN, LDP_FPSIMD, STP_GEN, STP_FPSIMD, LDADDB, LDADDH,

LDADD, LDCLRB, LDCLRH, LDCLR, LDEORB, LDEORH, LDEOR, LDSETB, LDSETH,

LDSET, LDSMAXB, LDSMAXH, LDSMAX, LDSMINB, LDSMINH, LDSMIN, LDUMAXB,

LDUMAXH, LDUMAX, LDUMINB, LDUMINH, LDUMIN, SWPB, SWPH, SWP

Listing 6: List of the 198 memory instruction mnemonics

that ExfilState discovers and uses on Apple M1.

A Used Instructions

Listing 6 lists the 198 memory instruction mnemonics discovered
and used on Apple M1.
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Table 3: Overview of which tested microarchitecture is affected by which side channel. ✓ indicates a bit-error rate of at most 25 %
in the covert channel verification, while ∼ indicates a higher rate. Exponents show the complexity of the discovered sequence

in the form of the sequence length. The first per-column number is the bit-error rate (%), the second is the F-score (%) in the

verification stage. The last full column shows if a microarchitecture is affected by any of the 5 side channels.

Microarchitecture Lx+Sx Store+Ret Split-Store Translation-Race Pointer-Chase Affected

Cortex-A53 0.00 100.00 ✓2 0.00 100.00 ✓2 0.00 99.42 ✓3 ✓
Cortex-A55 0.00 99.86 ✓4 0.00 100.00 ✓3 ✓
Cortex-A510 19.63 86.31 ✓4 1.27 98.27 ✓3 ✓
Cortex-A520 16.90 80.59 ✓5 1.47 96.85 ✓3 ✓

Cortex-A72 0.00 100.00 ✓2 0.00 99.94 ✓2 ✓
Cortex-A73 0.00 100.00 ✓2 27.45 88.44 ∼2 0.00 99.70 ✓2 0.40 98.71 ✓2 ✓
Cortex-A75 0.00 99.05 ✓3 0.00 99.57 ✓2 0.00 100.00 ✓2 ✓
Cortex-A76 7.04 92.90 ✓3 0.00 99.92 ✓2 ✓
Cortex-A77 0.00 99.81 ✓3 ✓
Cortex-A78 0.00 99.77 ✓2 ✓
Cortex-A710 0.00 100.00 ✓3 ✓
Cortex-A715 0.00 99.90 ✓3 0.00 100.00 ✓3 ✓
Cortex-A720 0.00 94.46 ✓3 0.00 99.74 ✓3 ✓
Cortex-A725 0.00 88.43 ✓3 0.00 99.74 ✓2 ✓

Cortex-X1 0.00 99.89 ✓3 ✓
Cortex-X2 0.00 99.94 ✓3 ✓
Cortex-X3 0.20 99.44 ✓3 ✓
Cortex-X4 0.00 99.98 ✓3 ✓

Kryo

Falkor-V1/Kryo 0.00 99.85 ✓2 0.00 99.61 ✓2 0.20 98.21 ✓2 ✓
Kryo-V2 0.20 99.83 ✓3 0.00 99.36 ✓2 ✓
Kryo-3XX-Gold 0.10 99.00 ✓4 35.45 98.43 ∼2 0.00 99.50 ✓2 0.00 99.56 ✓2 ✓
Kryo-3XX-Silver 30.57 95.93 ∼4 1.27 95.55 ✓3 ✓
Kryo-4XX-Gold 0.00 99.93 ✓2 ✓
Kryo-4XX-Silver 1.96 98.92 ✓4 0.98 98.41 ✓3 ✓

Carmel 4.59 97.46 ✓3 ✓

Kunpeng Pro 0.00 100.00 ✓2 ✓

Oryon 0.10 99.26 ✓3 0.10 96.19 ✓4 ✓
Oryon V2 Phoenix L 0.49 83.42 ✓3 0.00 98.81 ✓2 ✓
Oryon V2 Phoenix M 0.00 81.40 ✓3 0.00 99.00 ✓3 ✓

Exynos M3 1.57 97.54 ✓4 2.06 99.77 ✓3 ✓

Neoverse-N1 0.00 99.89 ✓2 ✓
Neoverse-V2 0.00 99.88 ✓2 ✓

Firestorm-M1 0.00 98.52 ✓4 0.00 80.47 ✓2 ✓
Icestorm-M1 7.43 90.80 ✓5 0.00 99.88 ✓4 ✓
Avalanche-M2 5.47 90.15 ✓5 0.59 84.46 ✓2 ✓
Blizzard-M2 45.32 80.79 ∼8 5.28 93.27 ✓3 ✓

1 STTRH w1, [x2]
2 LDAXRH w2, [x1]
3 LDRSB w0, [x3]
4 STLXRB w0, w3, [x1]

Listing 7: Lx+Sx on Apple Avalanche. x1 is the victim cache

line. x2 and x3 are unrelated cache lines. Instructions 1 and 3

are not needed on Cortex-A73.

B Full Results

Table 3 shows which microarchitectures are affected by which side
channel, with the error rate and F-score of the verification stage.

C Example of Complexity

Listing 7 shows an example of Lx+Sx, where the short sequence
works on Cortex-A73, while only the longer sequence works on
Apple Avalanche.
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Table 4: List of devices used for the evaluation of ExfilState.

Manufacturer Models

Apple Mac Mini (M1), Mac Mini (M2)
ASUS ZenFone Max M1, ZenFone Max M2
AWS EC2 M8g Graviton4
FriendlyELEC NanoPi R6S
Fujitsu Arrows Be3
Globalscale MOCHAbin
Google Pixel Watch, Pixel Watch 2, Pixel, Pixel 2, Pixel 2 XL, Pixel 3, Pixel 4a, Pixel 5, Pixel 5a, Pixel 6, Pixel 6 Pro, Pixel 6a,

Pixel 7, Pixel 7 Pro, Pixel 7a, Pixel 8, Pixel 8 Pro, Pixel 8a, Pixel 9, Pixel 9 Pro, Pixel 9 Pro Fold, Pixel 9 Pro XL, Pixel Fold,
Pixel Tablet

Google Cloud C4A Axion, T2A Ampere
Hardkernel ODROID-N2+, Odroid-C4
HUAWEI P20 Lite, Mate 9
Lenovo Tab P11, Tab P12
LG Velvet
Motorola Moto G31, Moto G54 5G, Moto G30, Moto G 5G (2022), Moto G Play (2024), Razr 5G, Razr+ (2024), Moto Z Force
Nokia C31
Nothing Phone (1)
NVIDIA Jetson Orin Nano
OnePlus 10T, 11, Nord CE 3 Lite, 7 Pro (US Version), 6T, Nord 2T, Nord 3, Ace 2V, 9 Pro
OPPO A53, A79 5G, Find X3 Lite, Reno10 Pro+ 5G
OrangePi Kunpeng Pro
Poco X6 Pro, M6 Pro 5G, F3
Qualcomm Dell XPS 13
Radxa ROCK 3A, ROCK 5C
Raspberry Pi 4 Model B, 5
Realme GT Neo 3T, GT Master Edition
Samsung Galaxy S7 edge (Verizon), Galaxy Note 5 (Verizon), Galaxy Tab S3 (Verizon), Galaxy A02s, Galaxy A8, Galaxy A10,

Galaxy A12, Galaxy A14 5G, Galaxy A14 5G, Galaxy A15, Galaxy A25 5G, Galaxy A35 5G, Galaxy A51, Galaxy A52s 5G,
Galaxy A54 5G, Galaxy Z Flip 3 5G, Galaxy Z Flip 4, Galaxy Z Flip 5, Galaxy Z Fold 2 5G, Galaxy Z Fold 4, Galaxy Z Fold 5,
Galaxy J7 Prime, Galaxy A51 5G, Galaxy S8, Galaxy S8+, Galaxy S9, Galaxy S9, Galaxy S9+, Galaxy S20 5G, Galaxy S21 5G,
Galaxy S21+ 5G, Galaxy S21 Ultra 5G, Galaxy M11, Galaxy Note 9, Galaxy Note 9, Galaxy S23 FE, Galaxy S22 5G,
Galaxy S22+ 5G, Galaxy S22 Ultra 5G, Galaxy S23+, Galaxy S23 Ultra, Galaxy S23 Ultra, Galaxy S24, Galaxy S24 Ultra,
Galaxy S24 Ultra, Galaxy Tab A7 Lite LTE, Galaxy Tab A 10.1 (2016) Wi-Fi, Galaxy Tab S7 FE 5G, Galaxy Tab A8 Wi-Fi,
Galaxy Tab A9 Wi-Fi, Galaxy Tab S9 FE+, Galaxy Tab S7 Wi-Fi, Galaxy Tab S8 Ultra Wi-Fi

Sharp AQUOS sense2
Sony Xperia XZ1 Compact, Xperia 10 V, Xperia 1 V, Xperia XZ, Xperia 10 II
Vivo Y20s [G], Y31 (2021), Y73, X60, Y02s, Y95, Y12, Y15, U3x, Y17
Xiaomi Mi 11i, Mi A2 Lite, Redmi Note 13 Pro+ 5G, Redmi Note 11 5G, Redmi Note 11 Pro, Redmi Note 12, Redmi Note 12 Pro+
Zebra TC77

D Devices

Table 4 lists which devices we used for the evaluation of Exfil-
State.
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