
ShadowLoad: Injecting State into Hardware Prefetchers
Lorenz Hetterich

CISPA Helmholtz Center for
Information Security

Saarbrücken, Saarland, Germany
lorenz.hetterich@cispa.de

Fabian Thomas
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany

fabian.thomas@cispa.de

Lukas Gerlach
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany

lukas.gerlach@cispa.de

Ruiyi Zhang
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany

ruiyi.zhang@cispa.de

Nils Bernsdorf
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany
nibe00018@stud.uni-saarland.de

Eduard Ebert
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany
edeb00001@stud.uni-saarland.de

Michael Schwarz
CISPA Helmholtz Center for

Information Security
Saarbrücken, Saarland, Germany

michael.schwarz@cispa.de

Abstract
Hardware prefetchers are an optimization in modern CPUs
that predict memory accesses and preemptively load the
corresponding value into the cache. Previous work showed
that the internal state of hardware prefetchers can act as a
side channel, leaking information across security boundaries
such as processes, user and kernel space, and even trusted
execution environments.

In this paper, we present ShadowLoad, a new attack primi-
tive to bring inaccessible victim data into the cache by inject-
ing state into the hardware prefetcher. ShadowLoad relies on
the inner workings of the hardware stride prefetchers, which
we automatically reverse-engineer using our tool StrideRE.
We illustrate how ShadowLoad extends the attack surface of
existing microarchitectural attacks such as Meltdown and
software-based power analysis attacks like Collide+Power
and how it can partially bypass L1TF mitigations on clouds,
such as AWS. We further demonstrate FetchProbe, a stride
prefetcher side-channel attack leaking offsets of memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716020

accesses with sub-cache-line granularity, extending previ-
ous work on control-flow leakage. We demonstrate Fetch-
Probe on the side-channel hardened Base64 implementa-
tion of WolfSSL, showing that even real-world side-channel-
hardened implementations can be attacked with our new
attack.

CCS Concepts: • Security and privacy→ Side-channel
analysis and countermeasures;Hardware reverse en-
gineering; Cryptanalysis and other attacks; Virtualization
and security.

Keywords: microarchitecture, prefetcher, side channel
ACM Reference Format:
Lorenz Hetterich, Fabian Thomas, Lukas Gerlach, Ruiyi Zhang, Nils
Bernsdorf, Eduard Ebert, and Michael Schwarz. 2025. ShadowLoad:
Injecting State into Hardware Prefetchers. In Proceedings
of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3676641.3716020

1 Introduction
Microarchitectural attacks often exploit undocumented CPU
implementation details. A wide range of microarchitectural
elements including caches [28, 53], predictors [20], prefetch-
ers [10, 23], and dynamic voltage and frequency scaling
(DVFS) [49], have been exploited for microarchitectural at-
tacks. While prediction-based attacks have been used as side
channels [8] and for transient-execution attacks [20], they
primarily focus on branch prediction. Only recently have re-
searchers investigated the prediction capability of hardware
prefetchers [6, 33, 45, 56]. However, the focus has been on
control flow [6] and data injection [45] (cf. Table 1). Hence,

https://doi.org/10.1145/3676641.3716020
https://doi.org/10.1145/3676641.3716020
https://doi.org/10.1145/3676641.3716020

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

several aspects of hardware prefetching are still unexplored
in the context of microarchitectural attacks.

In this paper, we analyze the internal state used by stride
prefetchers to answer the following questions: What are the
security implications of “poisoning” the internal state, i.e., in-
jecting state into stride prefetchers? What additional informa-
tion can be gained from the internal state of such prefetchers,
also across security boundaries?
We demonstrate ShadowLoad, a technique to bring an

attacker-chosen, unaccessed memory location of the victim
into the cache. In contrast to Spectre, ShadowLoad does not
require complex gadgets but only a single load in the vic-
tim. ShadowLoad exploits the missing isolation of hardware
prefetcher state between applications or privilege levels on
Intel and AMD CPUs up to (and including) Zen 2. Our anal-
ysis uncovers previously unknown aliasing, enabling the
creation of prefetcher state entries, which other contexts
reuse. Hence, prefetcher state can be injected from userspace
and then applied in different targets, such as the kernel,
bringing architecturally inaccessible data into the L1 cache.

We additionally introduce FetchProbe, a technique to mon-
itor offsets of memory accesses with sub-cache-line granu-
larity across privilege boundaries without relying on shared
memory. FetchProbe works on Intel and AMD CPUs up to
Zen 2, and extends previous works that monitor the con-
trol flow with sub-cache-line granularity [6, 56]. The idea
of FetchProbe is to trick the hardware stride prefetcher into
completing a stride based on a prior access from the victim
and trigger accesses from the attacker. By varying the address
of the trigger accesses and observing if a stride completion
happens, an attacker learns the partial address of victim data
loads. Since FetchProbe relies on undocumented hardware
stride prefetcher behavior, we introduce the StrideRE frame-
work to reverse-engineer its implementation automatically.

We use ShadowLoad and FetchProbe in 5 case studies.
We demonstrate that ShadowLoad can partially re-enable
L1TF by returning data to the L1 cache after it is flushed by
breaking KASLR of the hypervisor despite state-of-the-art
mitigations. Such attacks are realistic since L1TF-affectedma-
chines are widely used in cloud environments like AWS. We
combine ShadowLoad with Meltdown to leak uncached data.
Our proof-of-concept implementation leaks up to 203.2 kB/s
on an Intel Xeon E5-1505M v5 with 86.3 % of bytes recovered
correctly. On CPUs unaffected byMeltdown orMDS, we com-
bine ShadowLoad with Collide+Power and confirm leakage
comparable to Spectre-based Collide+Power. We show how
FetchProbe can re-enable cache-based attacks on the side-
channel resilient Base64 implementation of WolfSSL via the
data flow. Finally, we use FetchProbe with Spectre gadgets
that are insufficient for cache-based Spectre attacks, leaking
18.6 kB/s on an Intel Core i9-13900K with 100% correctly
recovered bytes.

Our attacks show that hardware prefetchers are a powerful
primitive for improving or re-enabling microarchitectural

attacks. Currently, only turning off hardware prefetchers
mitigates our attacks. Alternatively, we discuss a software
mitigation similar to the ConTExT [35] Spectre mitigation.

Contributions. The main contributions of this work are:
1. We propose ShadowLoad, a novel attack primitive that

allows prefetching data at rest into CPU caches by
relying on previously unknown aliasing in the data
structure of hardware stride prefetchers.

2. We build StrideRE, a framework to reverse engineer
parameters required for hardware stride-prefetcher
attacks automatically.

3. We present FetchProbe, a side channel on stride prefetch-
ers that leaks offsets of memory accesses across secu-
rity boundaries with sub-cache-line granularity, ex-
tending previous works that focus on control flow.

4. We demonstrate that ShadowLoad can partially bypass
mitigations for L1TF, and FetchProbe can be used for
Spectre attacks.

5. We evaluate ShadowLoad and FetchProbe by leaking
data at rest and enabling attacks on the side-channel-
hardened WolfSSL Base64 implementation.

Outline. The remainder of this paper is organized as
follows. Section 2 covers the background required for the
remainder of the paper. Section 3 introduces ShadowLoad
and FetchProbe. Section 4 explains how StrideRE reverse en-
gineers parameters of hardware stride prefetchers. Section 5
evaluates StrideRE, ShadowLoad, and FetchProbe. Section 6
demonstrates ShadowLoad and FetchProbe in different case
studies. Section 7 lays out related work. Section 8 proposes
possible countermeasures. Section 9 discusses our findings.
Section 10 concludes.
Responsible Disclosure. We notified AMD and Intel

about our findings. AMD will publish a security bulletin.
Intel upstreamed patches into the Linux kernel, improving
MDS mitigations against our attack.

Availability. Our code is available at https://github.com
/cispa/ShadowLoad.

2 Background
2.1 Caches and Cache Attacks
Modern CPUs employ small, high-speed memory buffers
known as caches. These caches bridge the latency between
the slow memory and the faster CPU by keeping frequently
accessed memory close to the CPU. A cache line, the small-
est unit in caches, is typically 64 bytes. Modern CPUs use
set-associative caches with 𝑛-way cache sets. Caches are hi-
erarchically organized into two or three levels: a fast private
L1 and L2 and a slower shared last-level cache (LLC).

Cache attacks exploit differences in access times between
cache hits and misses to reveal a victim’s memory activity.
Flush+Reload [53] uses the clflush instruction to flush a
cache line in shared memory and, after one execution of the
victim, measures reload time to detect if the victim accessed

https://github.com/cispa/ShadowLoad
https://github.com/cispa/ShadowLoad

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

CPU Vendor Spatial Resolution Target
Intel AMD Apple ARM Control Flow Data Flow Data Load Target Load Instr. Injection Prefetcher

FetchBench [33] × × × ✓ — 64 Bytes × ✓ ✓ × SMS

AfterImage [6] ✓ × × × Byte — × × ✓ × Stride

BunnyHop [56] ✓ × × × Byte — × × ✓ ✓ Instruction

Augury [45] × × ✓ × — — ✓ × × ✓ Data-dependent

Our work ✓ ✓ × × Byte 1-4 Bytes × ✓ ✓ ✓ Stride

Table 1. In contrast to previous work, our attacks are the only ones that target hardware prefetchers on AMD CPUs and can
infer data flow (the target of loads) with sub-cache-line accuracy.

the cache line. Prime+Probe [32] fills a cache set with known
addresses (prime), runs the victim, and refills the set while
measuring the time it takes (probe). If the victim accessed
the cache set, one of the cached values from the prime step is
evicted, leading to a slower time measurement in the probe
step. These attacks have been used to leak cryptographic
keys [3, 32] and monitor victim activity [12, 48].

2.2 Collide+Power
Collide+Power [21] is a software-based power-analysis at-
tack that exploits data collisions in shared CPU components
to leak data. It leverages the combined power consumption
of attacker and victim data in components like the mem-
ory subsystem. Data-dependent power consumption can
be exploited by an attacker who can interleave attacker-
controlled data with the victim’s secret data, for example,
by successfully moving attacker and victim data over the
memory bus. Collide+Power provides a new measurement
strategy that optimizes the attacker-controlled data to maxi-
mize leakage. However, to leak arbitrary data from the kernel,
Collide+Power depends on gadgets that allow an attacker to
force the desired data collisions, such as speculative prefetch
gadgets [19]. The complexity of mistraining and exploiting
such speculative prefetch gadgets significantly reduces Col-
lide+Power’s leakage rate [21].

2.3 Prefetcher
Modern CPUs contain software and hardware prefetchers
that prefetch data into the cache, reducing memory access la-
tency. Software prefetchers operate through prefetch instruc-
tions as hints to the CPU to bring data into different cache
levels [17]. Hardware prefetchers automatically preload data
based on access patterns and conditions, such as predictable
memory access patterns [33, 39] in the case of the stride
prefetcher. Often, e.g., when executing a loop, addresses are
accessed by a fixed increment or decrement called a stride.
Once a stride pattern is detected, the CPU can predict this
pattern and preemptively fetch memory into the cache.

2.4 Virtualization and Virtual Machines
Virtualization plays a fundamental role in cloud comput-
ing. A hypervisor partitions a physical machine into multi-
ple virtual machines (VMs), each operating independently
with its own operating system (OS) and applications. Mod-
ern hardware also incorporates virtual memory and address
translation within the VM, known as nested paging [2, 17].
The VM manages its own page table to translate guest vir-
tual addresses into guest physical addresses. Additionally,
the hypervisor manages the translation from guest physi-
cal addresses to host physical addresses, ensuring that each
VM’s memory operations remain isolated. AMD SEV [1]
adds transparent memory encryption to the VMs, guaran-
teeing confidentiality and integrity even in a malicious or
compromised hypervisor.

2.5 Transient-Execution Attacks
Out-of-order execution runs instructions when their depen-
dencies are met, minimizing pipeline stalls. Speculative exe-
cution predicts branch outcomes and runs instructions along
the guessed path. Although these instructions are executed
early and reordered, they architecturally retire in order. If a
fault or misprediction occurs, the effects of the instructions
(transient instructions) are discarded.

Transient-execution attacks exploit that transient instruc-
tions leave side effects in the microarchitectural state to leak
confidential data via side channels [11, 31, 53, 55]. Numerous
transient-execution attacks have been demonstrated, com-
monly categorized into Meltdown-type and Spectre-type
attacks [5]. Meltdown exploits lazy error handling in the
CPU, leaking inaccessible data in the L1 cache. MDS attacks,
e.g., ZombieLoad [36], are Meltdown variants that leak in-
flight data from internal CPU buffers. Foreshadow or L1
Terminal Fault (L1TF) [42] is a Meltdown variant targeting
non-present mappings. While the original Foreshadow at-
tack targeted Intel SGX, the underlying vulnerability is also
exploitable against the OS and from within virtual machines,
also called Foreshadow-NG [50]. Spectre-type attacks exploit
control or data flow misspeculation to leak data.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

for(i = 0; i < n; i++)
buffer[i * s];

T1

T2

T𝑛
.

s

*pointer;

A

P

s

aliased buffer

aliased load

Attacker Victim

Figure 1. Overview of ShadowLoad. The stride prefetcher is
mistrained in the attacker context by memory loads (𝑇1 to
𝑇𝑛) following a stride (𝑠). Then, a single memory load in the
victim context (𝐴) leads to the prefetching of data at rest (𝑃)
following the learned stride.

3 Hardware-Prefetcher Attack Primitives
In this section, we introduce two newprimitives, ShadowLoad
and FetchProbe. ShadowLoad uses hardware-prefetcher state
injection to bring inaccessible data at rest into the data cache,
re-enabling attacks where the mitigation relies on cache
flushing on context switch. FetchProbe in Section 3.2 turns
ShadowLoad around, exploiting it as a side channel to detect
whether a victim accessed an attacker-chosen address with
sub-cache-line granularity. While we focus on the hardware
stride prefetcher, we only refer to it as hardware prefetcher
in the remainder of this paper for the sake of readability.

3.1 ShadowLoad
ShadowLoad exploits that internal hardware prefetcher state
is usually not isolated between security contexts. Hence,
the state learned in one process can influence the prefetch-
ing behavior of a different process. Thus, an attacker can
trick the hardware prefetcher into continuing a sequence of
memory loads inside the victim domain, bringing otherwise
inaccessible data into the cache. Additionally, aliasing in the
prefetcher data structures allows mistraining on different
addresses; shared code or memory is not required.
ShadowLoad is illustrated in Figure 1. First, the (stride)

prefetcher is mistrained by executing memory loads follow-
ing a stride pattern in the attacker context, loading attacker-
controlled memory (𝑇1 to 𝑇𝑛). The load instruction address,
number of accesses, and base address of the memory buffer
depend on the prefetcher implementation. They are chosen
to alias with the victim load, so the prefetcher incorrectly
assumes that they are in the same stride as the victim load.
Section 4 shows how to reverse-engineer these values for a
given microarchitecture automatically.
Once the prefetcher is mistrained, a memory load in the

victim context is triggered (𝐴). How this load is triggered
depends on the victim context. For a kernel victim, a syscall
can trigger the load. For a hypervisor victim, an instruc-
tion trapped by the hypervisor may be executed by the VM.

for(i = 1; i < n; i++)
buffer[i * s];

T2

T3

T𝑛
.

s

P

s

*pointer;

A
aliased buffer

aliased load

AttackerVictim

Figure 2. Overview of FetchProbe. The prefetcher is trained
by a single access (𝐴) in the victim context followed by mul-
tiple accesses (𝑇2 to 𝑇𝑛) in the attacker context following a
stride (𝑠). Only if the victimmakes the access (𝐴) thatmatches
the stride is the prefetcher fully mistrained and prefetches
the next location in the stride (𝑃) triggered by the last access
in the attacker context (𝑇𝑛). By measuring the cache state of
𝑃 , an attacker learns whether 𝐴 was accessed.

This load additionally prefetches data following the trained
stride (𝑠) into the cache even though it is never architec-
turally accessed (𝑃). The attacker chooses the trained stride
(𝑠) to specify the prefetched address. Since the victim triggers
the prefetcher, the prefetching is done within the context
of the victim. The state learned in userspace can influence
kernel prefetching behavior on most tested devices. Thus,
prefetching kernel memory is possible even if the prefetcher
is mistrained in userspace if the single access triggering the
prefetching originates in the kernel. We demonstrate how
to use ShadowLoad for attacks in Section 6.

3.2 FetchProbe
FetchProbe is the inverse of ShadowLoad, leaking partial
addresses of victim loads by observing prefetching in the
attacker domain (cf. Figure 2). An attacker wants to learn
whether the victim accesses address 𝐴. Assuming 𝐴 is ac-
cessed, the attacker completes a stride using the memory
accesses 𝑇2 to 𝑇𝑛 , where 𝑛 is the number of accesses needed
to train the prefetcher. If the victim accesses 𝐴 aliasing with
𝑇1, the prefetcher continues to load 𝑇𝑛+1 in the attacker do-
main. Otherwise, the prefetcher is only partially trained and
does not bring 𝑇𝑛+1 into the cache. Thus, an attacker learns
whether the victim accessed 𝐴 by checking the cache state
of 𝑇𝑛+1, e.g., using Flush+Reload. As the prefetching occurs
on the attacker-mapped memory buffer and not the victim
buffer, it can be observed even without shared memory.
Assuming we can trigger the victim access repeatedly,

we can test all possible combinations of load address offset
and load instruction address offset and use this oracle to
gain information about the accessed memory address and
load instruction address, i.e., the data flow. Further, many
CPUs learn strides with sub-cache-line accuracy (as has been

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

shown for control flow in previous work [6, 56]), and prefetch-
ing only occurs if all training accesses follow the stride ac-
curately. This allows leaking memory-access offsets with
sub-cache-line granularity, which is especially interesting as
traditional cache side-channel attacks are limited to cache-
line granularity. We demonstrate how to use FetchProbe for
attacks in Section 6.

4 Reverse-engineering Prefetchers
This section introduces StrideRE, our tool to reverse-engineer
features of stride prefetchers automatically. The reverse-
engineered parameters are vital for mounting ShadowLoad
and FetchProbe. We open-source StrideRE with the final
version of the paper.

4.1 Overview
The prefetcher data structures are indexed using an undocu-
mented combination of partial address bits of the load instruc-
tion and load target address. While multiple load addresses
and memory buffers map to the same index in the prefetcher,
it is undocumented which address bits are used and how
they are combined to form the index. It is further unknown
whether some form of address-space identifier is used to pre-
vent cross-address-space usage and whether prefetchers are
shared across hyperthreads and security domains. StrideRE
determines the aliasing of load-instruction and load-target
addresses, and additional parameters impacting ShadowLoad
and FetchProbe. The parameters StrideRE can infer and im-
plementation details are outlined in the following sections.

4.2 Aliasing
Mounting ShadowLoad and FetchProbe requires the capabil-
ity to choose aliasing addresses such that attacker and vic-
tim use the same prefetcher data structures. Indexing in the
prefetcher data structure is based on partial addresses of the
load instruction and the load target. By flipping a single bit
in the load instruction address or accessed buffer address and
observing whether the prefetcher is still triggered, StrideRE
finds whether this bit is used for indexing the data structure.
As this cannot find all forms of aliasing (i.e., if a combination
of all bits is used for indexing), a second test that checks
random addresses is executed in case no aliasing is found.
StrideRE combines both aliasing tests to evaluate whether
mistraining on different addresses for instruction and target
is possible. Tests are also executed with the attacker and
victim residing in different domains, i.e., the same-process,
userspace and kernel, and different hyperthreads. With this,
StrideRE determines whether the prefetcher data structures
are shared across security domains.

4.3 Prefetcher Characteristics
In addition to collisions in the prefetcher data structures,
ShadowLoad and FetchProbe require exact knowledge when

the prefetcher is triggered. These characteristics include the
maximum stride that can be learned, whether prefetching
can cross page boundaries (i.e., the target of the triggering
load and the prefetched memory reside on different pages),
and the stride granularity. Additionally, StrideRE varies other
parameters, like whether fence instructions are used between
loads and different workloads, to determine the optimal con-
ditions to trigger prefetching.

4.4 Implementation
StrideRE is built modularly, allowing the addition of tests
(e.g., whether prefetching crosses page boundaries) and tar-
gets (e.g., kernel, userspace). As the tests require tight control
over memory and executed instructions, they are written in
C, while the analysis scripts are implemented in Python. An
analysis script executes a test binary with different runtime
and compile-time parameters and analyzes the results. De-
pending on the analysis script, a test might be repeated with
different timers or targets.

Measurement. To detect if a memory location has been
cached, StrideRE relies on Flush+Reload [53]. For this, Strid-
eRE requires a high-resolution timer. StrideRE currently sup-
ports native timers and a generic counting-thread implemen-
tation [14, 24].

Targets. StrideRE implements a target for same-process,
hyperthread, and kernel. The same-process target allows
additional configuration with compile-time parameters. For
instance, the virtual address of the buffer and memory-load-
gadget instruction can be controlled.
Modularity. Tests can rely on an interface to interact

with timing primitives and victims. This allows the imple-
mentation of tests that are agnostic to the victim. For exam-
ple, the test for full aliased mistraining targets a victim in
the same process, hyperthread, or kernel without modifying
the test itself.

5 Evaluation
This section evaluates StrideRE by reverse-engineering the
prefetcher details on 16 CPUs (Section 5.1). The results are
used to evaluate ShadowLoad on 13 CPUs that StrideRE
finds exploitable (Section 5.2). Additionally, we manually
analyze the prefetchers of the Apple M1 and M2 CPUs in
Section 5.3. We implement two variants of FetchProbe: One
that infers whether a kernel memory access is executed (Sec-
tion 5.4), and one that leaks the offset of a kernel memory
load (Section 5.5). For both variants of FetchProbe, we pro-
vide versions for Intel and AMD CPUs.

5.1 StrideRE Evaluation
To evaluate StrideRE, we run it on 16 different CPUs. While
all tested CPUs implement a hardware stride prefetcher, the
details regarding aliasing and characteristics vary, as sum-
marized in Table 2.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

Aliasing. On Intel Coffee Lake, Skylake, Broadwell, and
Sandy Bridge CPUs, the prefetcher data structure uses only
the least significant 8 bits of the instruction address for in-
dexing. This is increased to 10 bits on Raptor Lake (P-core),
Alder Lake (P-core), and Ice Lake, while the E-cores of Rap-
tor Lake and Alder Lake require at least 12 matching bits.
Thus, finding aliasing loads on those CPUs only requires the
knowledge of the least significant 8, 10, or 12 address bits.
AMD Zen 1 and Zen 2 CPUs show similar aliasing if the least
significant 12 bits of the load instruction match. For AMD
Zen 3 CPUs, we do not observe aliasing.

𝐴0 = 𝑏0 ⊕ 𝑏8

𝐴1 = 𝑏1 ⊕ 𝑏8 ⊕ 𝑏11

𝐴2 = 𝑏2

𝐴3 = 𝑏3 ⊕ 𝑏11

𝐴4 = 𝑏4 ⊕ 𝑏11

𝐴5 = 𝑏5 ⊕ 𝑏8

𝐴6 = 𝑏6

𝐴7 = 𝑏7 ⊕ 𝑏11

𝐴8 = 𝑏10

𝐴9 = 𝑏9 ⊕ 𝑏11

Figure 3. PC Indexing Function for Zen and Zen 2. 𝑏𝑖 denotes
the i𝑡ℎ address bit. Two addresses alias if 𝐴0 - 𝐴9 match.

We further manually analyzed the exact indexing func-
tions on a subset of CPUs. On Intel Coffee Lake, Skylake,
Broadwell, and Sandy Bridge CPUs, an identity function is
used to map 8 input bits to 256 equivalence classes. On Zen
1 and Zen 2 CPUs, the 12 input bits are mapped to only 1024
classes using the function in Figure 3. The prefetcher cannot
distinguish two load instructions with addresses mapping to
the same class. The actual number of strides the prefetcher
can simultaneously track might be smaller than the number
of aliasing classes.
On Intel CPUs, aliasing between load targets is nuanced:

On the third access, the prefetcher is still learning a stride.
Aliasing and prefetching only occur if enough bits of the
load targets match. For Raptor Lake (P-core), Alder Lake
(P-core), and Ice Lake CPUs, 19 bits of the load targets (bits
0-19 excluding bit 16) are used for indexing. On Coffee Lake,
Skylake, Broadwell, and Sandy Bridge CPUs, 14 bits are used
(bits 0-14 excluding bit 12). With four or more accesses, a
stride is already learned. Prefetching on Intel CPUs is trig-
gered if bits 13 and 14 of the accessed address match (Comet
Lake, Coffee Lake, Skylake, Broadwell, Sandy Bridge) or with-
out any restrictions on the load target (Raptor Lake P-Core,
Alder Lake P-Core, Ice Lake). Two notable exceptions are
Raptor Lake and Alder Lake E-cores, where we do not ob-
serve any aliasing regardless of the number of accesses and
amount of matching bits. Prefetchers on AMD Zen 1 and
Zen 2 CPUs always use 19 address bits (bits 0-18) to decide
whether prefetching should occur. AMD Zen 3 CPUs do not
show any aliasing between load targets.
Characteristics. The number of accesses required for

prefetching is 4 on all AMD CPUs. However, for strides
larger than 4096 B, 3 accesses suffice to trigger the hardware
prefetcher on Zen 1 and Zen 2 CPUs. Even if the same load

instruction makes more accesses, the prefetcher is only trig-
gered if the final access follows the stride. On Intel CPUs, 3
accesses suffice if the last access follows the stride. Starting
with 4 accesses, prefetching takes place even if the last access
does not follow the training stride.

The maximum stride the prefetcher can learn varies vastly
across CPUs. The maximum stride on Zen CPUs is 8192,
while on an Intel Xeon E5-1505M v5, strides are limited to
1984 bytes. More recent CPUs like an Intel Core i9-13900K
and AMD Ryzen 9 5900HX can learn strides greater than
16 384 bytes. We find that strides on all tested AMD CPUs
and Intel CPUs since Ice Lake and Alder Lake can cross pages.
Only prefetchers on Intel Coffee Lake and before are limited
to the same page. The stride granularity of all tested Intel
CPUs is single bytes and 4 bytes for AMD CPUs.

5.2 ShadowLoad Evaluation
From the results of StrideRE, we can infer CPUs that are vul-
nerable to ShadowLoad. To reasonably utilize ShadowLoad
for attacks, full out-of-place mistraining must be possible
across privilege boundaries, i.e., StrideRE detects aliasing
for loads, memory, and kernel. We inject prefetches from a
userspace attacker into a kernel victim on all CPUs fulfilling
those requirements.

Victim. As the victim, we use a kernel module exposing
a memory load to a fixed location relative to a buffer via
ioctl. Additionally, the victim exposes functionality to flush
its buffer or only a specific cache line in the buffer from
the cache. Finally, the victim allows measuring whether a
specified location in the buffer is cached. We assume that
the memory load instruction and buffer address are known
to the attacker.

Attacker. The attacker is a userspace program. This pro-
gram maps a load instruction and memory buffer such that
the least significant 46 address bits match the kernel coun-
terpart. We matched 46 bits of both, the load instruction
addresses and the buffer addresses, as it leads to aliasing
for all tested CPUs. The attacker uses 2 training accesses
for Intel CPUs and 3 training accesses for AMD CPUs. In
both cases, these loads follow a stride. Further, these loads
are aligned such that the kernel load aliases the predicted
next load in the stride. Next, the attacker triggers the kernel
load using the ioctl interface. If ShadowLoad is successful,
the next kernel buffer address following the trained stride is
prefetched into the cache. For all affected Intel CPUs, Strid-
eRE reports more lenient alignment requirements for the
accessed buffer if 4 or more accesses are made. We perform
an additional test on those CPUs using 3 training accesses
but a non-aligned kernel load target.
Results. We run the attacker 100 000 times and record

the number of successful injections and the runtime of the
mistraining and execution of the victim gadget. The whole
test is run once with the final victim accesses on memory
not residing in the cache and once with cached memory.

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Results of StrideRE clustered per similar prefetcher. Loads and Memory denote bitmasks of address bits used in the
prefetcher data structure.

Aliasing Characteristics
Microarchitecture Loads Memory Kernel Accesses Stride Cross Page Granularity

Zen 1 0xFFF 0xFFFF0 ✓ 3 (stride > 4096)/4 8192 ✓ 4

Zen 2 0xFFF 0xFFFF0 ✓ 3 (stride > 4096)/4 8192 ✓ 4

Zen 3 ✗ ✗ N/A 4 ≥ 16384 ✓ 4

Ice Lake, Raptor Lake (P-Core),
0x3FF 0xEFFFF/0x0 ✓ 3/4 ≥ 16384 ✓ 1Alder Lake (P-Core)

Raptor Lake (E-Core), Alder Lake (E-Core) 0xFFF ✗ N/A 3 ≥ 16384 ✓ ?

Skylake, Coffee Lake, Comet Lake,
0xFF 0x6FFF/0x6000 ✓ 3/4 1984 ✗ 1Sandy Bridge, Broadwell

ShadowLoad can inject prefetches across all tested CPUs
with varying success rates. AMD Zen 1 and Zen 2 CPUs
(AMD Ryzen 5 2500U, AMD Ryzen 5 3550H, AMD Ryzen
7 5700U, and AMD EPYC 7252) have a high success rate of
67.5% to 99.9%. On most tested Intel CPUs (Intel Core i3-
1005G1, Intel Core i9-12900K, Intel Xeon E5-1505M v5, Intel
Core i5-6400T, Intel Xeon E3-2176M, Intel Core i7-10510U,
Intel Core i5-2520M, and Intel Core i5-5010U), ShadowLoad
succeeds with 46.8% to 97.9% of injections. One notable
outlier is the Intel Core i9-13900K (P-Cores), with a success
rate of only 11.0% for unaligned injections using cached
accesses while mistraining. Even aligned injections training
on uncached memory are only successful in 23.0 % of cases
on this CPU. The overhead of mistraining is just 64.7 ns to
3489.1 ns per cache line, and the overhead of executing the
victim gadget is 85.5 ns to 2264.7 ns. The one-time setup
overhead of ShadowLoad is small at 6.2 µs to 67.7 µs. We
only observe prefetching on AMD CPUs if the kernel access
targets uncached memory that aliases the next address in a
trained stride. Intel CPUs show prefetching independent of
the cache state and alignment of the final access.

5.3 Prefetchers of the Apple M1 and M2 CPUs
In our tests, the hardware stride prefetchers of the Apple
M1 and M2 CPUs do not show aliasing for load targets. Still,
we manually reverse-engineer the prefetcher of the Apple
M1 and M2 P-Cores (called Firestorm and Avalanche, respec-
tively). While the prefetching logic on both cores does not
consider the load instruction address, the full load target
address is relevant (i.e., we cannot detect any load-target
aliasing). It might still be possible that some unknown non-
linear function is used to compress the load-target address
before it is used as an index.
We further analyze how many strides these prefetchers

can track simultaneously. For this, we train N strides, con-
tinue one of the trained strides, and measure whether the
prefetcher is triggered. By varying N, we determine the max-
imum amount of strides the prefetcher can simultaneously
remember. Firestorm and Avalanche can keep track of 16

strides. If more than 16 strides are trained, continuing any of
the previous strides no longer causes any prefetching. This in-
dicates that the prefetcher data structure is fully-associative
with 16 ways. Further experiments confirm that the eviction
policy for new strides is least-recently used (LRU).

5.4 Monitoring Memory Accesses with FetchProbe
In this section, we evaluate FetchProbe as primitive to detect
if a victim loads data from a monitored memory location.

Victim. Our victim contains a conditional branch based
on a secret bit, a classical scenario for side-channel attacks.
The taken branch contains a memory access to a fixed loca-
tion, whereas the not-taken branch has no memory access.

Attacker. The attacker triggers the execution of the vic-
tim gadget, which, depending on the secret, accesses a known
memory location. Following gadget execution, the attacker
continues training the prefetcher in their context and ob-
serves whether prefetching occurs, as illustrated in Figure 2.
The attacker can infer the secret value depending on whether
prefetching takes place.

Evaluation. We run our proof of concept on 3 Intel (Intel
Core i3-1005G1, Intel Core i9-12900K, Intel Core i9-13900K)
and 4 AMD (AMD Ryzen 5 2500U, AMD Ryzen 5 3550H,
AMD Ryzen 7 5700U, AMD EPYC 7252) CPUs. These CPUs
are all affected by ShadowLoad and allow prefetching to
cross page boundaries. We leak 32 768 bits (i.e., whether an
access was made), run the code 1000 times for each CPU,
and report the average leakage rate, false positives, and false
negatives. Correctly leaking whether the memory access was
executed works with a balanced F-score of 94.0% to 99.5%
(precision: 88.6 % to 99.4 %, recall: 92.1 % to 100.0 %) at rates
of 623.3 kbit/s to 2957.8 kbit/s.

5.5 Monitoring Memory Offset with FetchProbe
In this section, we evaluate the second aspect of FetchProbe,
leaking intra-cache-line offsets of memory loads.

Victim. As a victim, we use a kernel module with secret-
dependent access within a cache line. For the evaluation,
this access can be triggered from userspace via ioctl. We

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

assume that both the buffer address and the address of the
load instruction are known to the attacker.
Attacker. The userspace attacker leaks the secret offset

from the victim kernel module. For all possible offsets, the
attacker uses FetchProbe to infer whether an access is made
to the buffer at this offset. For this, the victim gadget must
be invoked once for each possible secret offset, i.e., 64 times
for a byte-granular offset in a cache line.
Evaluation. For the evaluation, we use two possible

offsets. Intel CPUs can learn strides with byte accuracy. Thus,
we use offsets 0 and 1. AMD CPUs can only detect offsets in
multiples of 4 bytes. Hence, we use offsets 0 and 4. Again, we
run our proof of concept on all CPUs reported to be affected
by ShadowLoad that allow strides crossing page boundaries.
We leak 32 768 bits (i.e., offsets), run the proof of concept
1000 times for each CPU, and report the average leakage rate,
false positives, and false negatives. Leaking which offset was
accessed works with a balanced F-score of 96.3 % to 100.0 %
(precision: 97.4 % to 100.0 %, recall: 93.6 % to 99.9 %) for each
offset at rates of 315.3 kbit/s to 1511.1 kbit/s.

6 Case Studies
In this section, we evaluate ShadowLoad and FetchProbe in 5
case studies. Section 6.1 demonstrates how ShadowLoad can
partially bypass L1 data cache flushing as L1TF mitigation.
Section 6.2 evaluates ShadowLoad with MDS. Section 6.3
mounts Collide+Power using ShadowLoad to leak data at rest.
Section 6.4 shows how FetchProbe can target code hardened
against cache attacks. Section 6.5 evaluates FetchProbe as a
Spectre covert channel.

6.1 Re-enabling L1TF using ShadowLoad
In this case study, we use ShadowLoad and L1TF to leak
a kernel pointer from the hypervisor, breaking KASLR. To
mitigate L1TF attacks from VMs targeting the hypervisor,
flushing the L1 cache on VM-Entry was added to Linux as
a mitigation [29, 50]. However, flushing the L1 cache is not
the last operation before re-entering the VM. After the cache
is flushed, memory accesses that load register contents of
the guest are performed. These loads can serve as gadgets
for ShadowLoad, bringing additional data into the L1 cache,
which can be leaked using L1TF.

Setup. We use QEMU system to run a Linux 6.8 VM.
Within this virtual machine, we run a modified version of
a public L1TF proof of concept exploit [46]. We use Shad-
owLoad to bring a (secret) hypervisor kernel pointer into
the cache. The load gadget required by ShadowLoad to cause
prefetching in the hypervisor is triggered using a cpuid
instruction after mistraining the hardware prefetcher. The
hypervisor traps the cpuid instruction, forcing a VM re-
entry. This flushes the L1 cache and afterwards triggers the

load gadget, prefetching the target kernel pointer of the hy-
pervisor into the cache. As the hypervisor kernel pointer is
cached, it can be leaked using L1TF.
Evaluation. We execute this exploit on an Intel Core

i7-6700 (stepping 3, microcode 0xf0) running Linux 6.8.0
with mitigations=on kernel parameter. We use QEMU 8.1.5
with KVM as hypervisor and VMX for virtualization. As a
gadget to trigger prefetching of secret data, we target a load
instruction that restores the guest rcx register. The structure
containing the registers also contains pointers to other data.
We leak one such pointer located 120 B before the saved rcx
register in memory. Thus, we mistrain the prefetcher to learn
a stride of −120 B. The exploit successfully leaks the kernel
pointer in less than 1 s (excluding VM boot).
We also test ShadowLoad and L1TF on the AWS cloud

to verify that such an attack is possible in the cloud, under-
scoring the practical relevance. AWS and Google Cloud both
have many Sandy Bridge to Skylake CPUs affected by L1TF.
In fact, the default instance type AWS recommends when
creating a new EC2 instance (T2) is vulnerable to Meltdown
and L1TF. Many instances AWS considers current genera-
tion (e.g., T3, C5, F1, G3, I3) are also affected. The default
GPU instance on Google Cloud is also a vulnerable Skylake
CPU, and the default general-purpose instance is randomly
selected from CPUs, including vulnerable CPUs.

Conclusion. ShadowLoad can bypass mitigations relying
on flushing secrets from the cache. On processors affected
by L1TF, ShadowLoad is limited to prefetching on the same
page, i.e., a 4096 B region containing the load target, which
suffices to leak hypervisor addresses but not arbitrary mem-
ory. If attacks similar to L1TF are discovered on recent Intel
processors with more powerful hardware prefetchers, the
scope of data that can be leaked drastically increases. Thus,
ShadowLoad should be considered in the threat model when
mitigating microarchitectural attacks.

6.2 ShadowLoad with MDS
This case study shows how ShadowLoad can bring data into
the cache, allowing an attacker to leak data at rest using
Meltdown [26] on an affected CPU. As Meltdown is limited
to leaking data in the L1 cache [38, 52], uncached data cannot
be targeted directly. ShadowLoad can target such uncached
data at rest, e.g., in the kernel, and let the hardware prefetcher
bring it into the cache. Subsequently, we can use Meltdown
to leak the cached data.
Setup. We use a kernel module as the victim and an

unprivileged attacker for our proof of concept. The kernel
module fills a page-aligned memory buffer with random
data during initialization. Using ioctl, the kernel module
exposes a memory load to buffer offset 2048, a gadget to flush
the page from the cache, and a function bringing a chosen
page offset into the cache. However, the latter is only used
for a reference test on cached memory.

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

The attacker uses ShadowLoad to bring each cache line
of the secret page into the cache and then leaks it using
Meltdown. The attacker uses a cache-based Meltdown attack
with return address mispredictions as a fault suppression
mechanism [40] to leak the secret 4-bit at a time.

Evaluation. We run the Meltdown code with a secret of
64 B, i.e., one cache line, and measure setup and leakage time
over a total of 10 000 executions on an Intel Xeon E5-1505M
v5 (stepping 3, microcode 0xd6) running Ubuntu 20.04.5 LTS
(kernel 5.4.0-170-generic) with all mitigations except kernel
page-table isolation (KPTI) enabled.
We run this test with three configurations: One us-

ing ShadowLoad to bring the secret into the cache
(MeltdownShadowLoad), one attempting to leak uncached
memory (Meltdownuncached), and one with a hyperthread
repeatedly accessing the secret cache line in the ker-
nel (Meltdowncached). MeltdownShadowLoad correctly leaks
86.3% of data at 203.2 kB/s, almost matching the 87.3% at
203.8 kB/s ofMeltdowncached. Meltdownuncached leaks no data
correctly. ShadowLoad’s median one-time startup overhead
is 11.9 µs, and the runtime overhead is measured at just 0.3 %.
Our proof-of-concept also works with KPTI enabled and
MDS mitigations disabled on an Intel Core i5-5010U, leaking
data using RIDL [44].
When increasing the kernel buffer size beyond one page,

we do not measure any leakage on the page not accessed by
the gadget with MeltdownShadowLoad. This is in line with the
results reported by StrideRE.
Targeting Kernel Code. To demonstrate that Shad-

owLoad also works on unmodified code in realistic scenarios,
we target a load in the getuid system call of Linux kernel
6.8.0. We use ShadowLoad to cache the remaining data of the
page, and subsequently like it with Meltdown. This increases
the amount of data that can successfully be leaked by roughly
factor ten compared to Meltdown without ShadowLoad.
Conclusion. ShadowLoad can enable Meltdown and

MDS attacks on data that is never architecturally accessed.
Thus, ShadowLoad expands the attack surface of such at-
tacks to data at rest. While other techniques, such as Spectre
gadgets, have been used to bring data into the cache [38],
they rely on additional gadgets possibly not present within
the victim. ShadowLoad only requires a memory load to data
close to the secret [33].

6.3 Collide+Power with ShadowLoad
While previous case studies rely on CPU-specific vulner-
abilities, Collide+Power operates across a wide range of
CPUs [21]. For our Collide+Power proof-of-concept, we mea-
sure the power consumption of microarchitectural data col-
lisions during prefetching. We use ShadowLoad to bring
victim data into the L1 cache and evict the prefetched line
with attacker-controlled data, combining their power of vic-
tim and attacker data. Hardware prefetching replaces the
speculative prefetch gadgets [19] originally used [21]. We

Table 3. Results of the linear regression for the model coeffi-
cients and Pearson correlation between the measured power
samples, the model for the complete model (𝜌𝑎𝑙𝑙), and when
only using the Hamming distance component (𝜌hd).

Gadget 𝜌𝑎𝑙𝑙 𝜌hd hd(𝐺,𝑉) hw(𝐺) hw(𝑉) Samples
·1 ·1 𝑎 in 𝜇𝑊 𝑏 in 𝜇𝑊 𝑐 in 𝜇𝑊 ·106

Direct Access 0.3692 0.0750 109.47 528.16 −1.08 12
Spectre-RSB 0.0827 0.0071 11.12 129.13 −0.02 12

ShadowLoad 0.1098 0.0074 9.24 135.80 0.02 12

analyze and compare the derived leakage model of our new
attack with the best case of the original Collide+Power attack
when directly and speculatively accessing the inaccessible
data using a load and a Spectre-RSB gadget.
Setup. To mitigate the PLATYPUS attack [25], the Run-

ning Average Power Limit (RAPL) [17] interface is no
longer unprivileged. Other unprivileged indirect power in-
terfaces [27, 49] increase the overall noise, making attacks
significantly slower. Thus, we rely on the RAPL interface
for this proof-of-concept to enhance reproducibility. We ex-
clude additional noise by placing the victim data directly
in the attacker’s virtual address space, removing the need
for context switches. Finally, we implement the nibble-based
amplification and differential measurement technique as de-
scribed in Collide+Power to perform the comparison with
fewer samples.

Evaluation. To record a single power sample, wemeasure
the energy consumption for 10ms using the RAPL interface
over the following two steps: First, we prefetch the victim
data into the L1 cache using ShadowLoad. Second, we evict
the prefetched data using an L1 eviction set. We replace the
first step with a memory access and a Spectre-RSB gadget
for comparison, similar to the strongest gadgets presented
in Collide+Power [21]. Finally, we post-process the samples
using the samemethodology and framework provided byCol-
lide+Power [21]. Thus, we keep the attacker-controlled data
𝐺 of the eviction set and the victim data 𝑉 constant while
recording a power sample. To compare the power leakage
between the variants, we use the following power leakage
model 𝑃 and perform both a linear regression to compute
the coefficients of the model and correlation analysis:

𝑃 (𝐺,𝑉) = 𝑎 · hd(𝐺,𝑉) + 𝑏 · hw(𝐺) + 𝑐 · hw(𝑉).

Table 3 shows the results of the linear regression when exe-
cuting the proof-of-concept on an Intel Core i9-9980HK with
the frequency fixed to 3.5GHz. We record 12million samples
for the analysis per test. Our linear regression analysis shows
that the exploitable Hamming distance leakage between the
attacker and victim domain is reduced by a factor of 11.85
when using ShadowLoad compared to directly accessing the
data.We assume this reduction in leakage performance is due
to the memory accesses required to mistrain the hardware
prefetcher. ShadowLoad shows comparable performance to

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

the Spectre-RSB gadget with only a reduction 1.20 times in
the leakage coefficient. However, the Pearson correlation
coefficient is 1.33 times stronger, indicating that less noise is
present and that the model components represent the power
consumption better when using ShadowLoad. Finally, the dif-
ferential measurement technique [21] nullifies the influences
of the Hamming weight of the victim data.

Conclusion. ShadowLoad enhances the threat model of
Collide+Power by replacing the required speculative prefetch
gadgets with hardware-based prefetches. Due to the minimal
requirements of ShadowLoad, an attacker can target data
that is never accessed by the victim, even when a specific
Spectre prefetch gadget cannot reach the data. Finally, we
show that ShadowLoad is comparable to a Spectre-RSB gad-
get even though it does not require mistraining and is the
best-performing gadget for the Meltdown-Power attack [21].
Nevertheless, we leave further optimizations to increase the
leakage signal as future work, for example, by potentially
combining the prefetcher mistraining and the cache eviction.

6.4 FetchProbe on Side-Channel-Hardened Base64
In this case study, we attack the side-channel-hardened
Base64 implementation of WolfSSL 5.7.2. WolfSSL uses an
ASCII lookup table to decode Base64 characters, which, due
to the non-continuous character set, spans over two cache
lines. To prevent side-channel leakage, the implementation
accesses both cache lines and uses masking to select the cor-
rect value. While this method appears secure at cache-line
granularity, FetchProbe can monitor loads at sub-cache-line
granularity, circumventing the mitigation and recovering
Base64-encoded secrets.

Setup. We generate a random 256-bit key and Base64 en-
code it, resulting in a 44-character secret. We call the vulner-
able Base64_Char2Val function on each encoded character
andmount FetchProbe to infer the secret. Given FetchProbe’s
byte-granularity the access indices yield two possible values
for 24 of the 64 Base64 characters, leaving a candidate set of
2 (1 bit). For all other characters, only one accessed value is
valid. We can uniquely recover these characters and know
the candidate set for the uncertain ones, allowing us to enu-
merate all possible keys via brute force. If any character is
recovered incorrectly, we report the attempt as failed.
Evaluation. We execute our attack 10 000 times on an

Intel Core i9-13900K, successfully recovering the partial se-
cret in 9208 runs (92.1%). In these 9208 runs, the required
brute-force effort is reduced from 256 bit to 16.5 bit on aver-
age. Previous work [4] showed that even modern desktop
CPUs can brute-force around 400 million AES keys per sec-
ond, resulting in a brute-force time in the micro- to millisec-
ond range. On average, the attack’s execution time is 2.4ms
(leaking 106.7 kbit/s) and requires 1425.1 executions of the
Base64_Char2Val function or 32.4 per character.
Conclusion. This case study demonstrates that Fetch-

Probe can monitor memory accesses with sub-cache-line

granularity, allowing it to target side-channel-resistant code.
Thus, a threat model that assumes only cache-line granular
observation is inadequate on affected CPUs. Side-channel-
hardened code based on this model should be updated to
defend against byte-granular attacks like FetchProbe.

6.5 FetchProbe with Spectre
In this case study, we use FetchProbe as encoding for Spec-
tre to leak kernel memory using a simple secret-dependent
memory access without a spreading factor [20]. Traditional
cache side channels detect memory accesses with cache-line
granularity, so 6 bits of the secret cannot be recovered. In
contrast, FetchProbe can recover memory accesses with a
granularity of single bytes on an Intel Core i9-13900K or 4
bytes on an AMD Ryzen 7 5700U.

Setup. In line with other research [37], we introduce our
own Spectre gadget. We use a kernel module and expose the
gadget using ioctl. The Spectre gadget only has a secret-
dependent memory load without any spreading factor.
Using traditional side channels with cache-line granular-

ity (64 bytes), only the most significant 2 bits of the secret
value can be recovered. With FetchProbe on an Intel Core
i9-13900K, all 8 bits of the secret can be recovered. On an
AMD Ryzen 7 5700U, 6 bits can be leaked.

Evaluation. We initialize a page of kernel memory
with random secret bytes. Using the Spectre gadget, the
attacker speculatively encodes a secret byte into the internal
prefetcher state and relies on FetchProbe as a side channel to
recover it. An attacker can leak all secret bytes by repeating
these steps with different offsets. We execute this code on
two machines, an Intel Core i9-13900K and an AMD Ryzen
7 5700U. We additionally scale the secret by a factor of 4 on
an AMD Ryzen 7 5700U to fully recover it. This attack still
recovers twice as many bits as a traditional cache side chan-
nel using the same gadget. On an Intel Core i9-13900K, the
attack leaks memory at 18.6 kB/s while correctly recovering
100.0 % of all bytes. On an AMD Ryzen 7 5700U, the leakage
is 9.5 kB/s with a correctness of 98.8 %.

Conclusion. FetchProbe can leak memory accesses with
sub-cache-line granularity and works during speculative exe-
cution. This precision enables Spectre gadgets not exploitable
for traditional cache covert channels. We further modified
InspectreGadget [51] to find such gadgets, resulting in an
24.8 % increase of the reported number of exploitable gadgets
for the Linux kernel v6.6-rc4 from 1566 to 1955.

7 Related Work
This section discusses related work on hardware prefetchers
and compares ShadowLoad and FetchProbe to other attacks.
Reverse Engineering Hardware Prefetchers. Fetch-

Bench [33] categorizes hardware prefetchers into models and
provides a tool that automatically scans for various hardware
prefetchers and reverse engineers their parameters based on

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the model. We focus on stride prefetchers and reverse further
details such as instruction-pointer and previously unknown
load-address collisions needed for out-of-place mistraining.
Chen et al. [6] similarly do not reverse-engineer mistrain-
ing conditions but other details, such as replacement policy
or history table size on the instruction-pointer-based stride
prefetcher on Intel. Further, Vicarte et al. [45] also reverse-
engineer a data-dependent prefetcher on recent Apple cores.
Hardware Prefetcher Side Channels. Schlüter et al.

[33] use a replay-based prefetcher attack to leak partial AES
keys from a T-table implementation and build an ARM Trust-
Zone covert channel. They exploit the shared prefetcher state,
similar to FetchProbe but targeting a different prefetcher, to
leak metadata across the privilege boundary of TrustZone.
Chen et al. [6] exploit changes in the internal state of the Intel
IP-stride prefetcher based on victim execution to leak secret-
dependent control flow of theMbedTLS RSA implementation.
While their attack targets the same prefetcher as FetchProbe,
it does not leverage aliasing in the accessed memory and
instead uses a Prime+Probe-like approach. Thus, it does not
directly translate to AMD and cannot inject prefetches nor
leak the target of a memory access but only whether a load
instruction is executed. BunnyHop [56] exploits the instruc-
tion prefetcher on Intel CPUs to leak cryptographic keys.
Vicarte et al. [45] exploit the data-dependent prefetcher on
recent Apple cores to leak out-of-bounds data at rest with
a Spectre gadget with Speculative Load Hardening enabled.
These related attacks are summarized in Table 1.

Microarchitectural Injection-Style Attacks. Spectre-
type attacks mistrain microarchitectural components such
as the Branch Target Buffer (BTB) such that the CPU spec-
ulatively continues execution at an attacker-controlled ad-
dress [20]. An attacker can transiently encode inaccessible
data into the microarchitectural state and later retrieve it via
a side channel. In contrast, ShadowLoad does not change the
control flow but brings victim data into the cache to later leak
it via another primitive, e.g., MDS or Collide+Power. Load
Value Injection [43] transiently injects attacker-controlled
data into a victim. An attacker-controlled value is transiently
passed to a faulting victim load. Thus, in contrast to Shad-
owLoad, no predictor is mistrained.

Software-based Prefetch Attacks. Previous work also
investigated software prefetching as a side channel [10, 13,
23]. However, in contrast to hardware prefetchers, software
prefetchers are limited to the same security domain. They
are also significantly simpler, as the prefetch target is pro-
vided as an argument. Thus, no data structure is required
for the prefetch mechanism. Consequently, these attacks are
orthogonal to our attacks.

8 Countermeasures
This section discusses and evaluates different countermea-
sures for mitigating ShadowLoad and FetchProbe on the
hardware, firmware, and software layer.

Hardware. CPU vendors could use an address-space iden-
tifier to tag the predictor state with a security domain. As
such identifiers are already used in the TLB [22], we expect
this to be a feasible design change. Chen et al. [6] propose
a privileged clear-ip-prefetcher instruction to clear the
state of Intel’s IP-based prefetcher when transitioning be-
tween security contexts requiring OS support.
Firmware. CPU vendors can provide mitigations in mi-

crocode. Similar to Spectre mitigations [15, 30], it could be
possible to introduce new restricted predictors. We imagine
a new MSR bit that changes the predictor such that it does
not use predictions across security domains, akin to IBRS
for Spectre [15]. A new MSR that lets software clear the
predictor state could also be introduced.

Software. A simple mitigation to prevent all leakage from
hardware prefetchers is to turn off all prefetchers. This is
possible on Intel and AMD CPUs via model-specific regis-
ters [23, 47] but comes with a performance penalty.
Instead of turning off hardware prefetchers, we propose

marking specific memory regions as not prefetchable using
memory types. Like speculative loads, the CPU does not
issue hardware prefetches to uncachable memory regions, as
this could have unexpected architectural effects on memory-
mapped devices [35]. Hence, by marking memory containing
secret values as uncachable, they are protected not only
from being leaked with Spectre attacks [35] but also from
being fetched into the cache. Our experiments confirm that
marking amemory range as uncachable using either memory
type range registers [17] or the page-table entry prevents
the hardware prefetcher from prefetching any values from
this page. As uncachable memory introduces a performance
penalty, Intel also proposed using a new memory type that
only prevents speculative accesses [41]. If implemented, this
could also be extended to mitigate prefetcher access.

As hardware mechanisms for clearing the predictor state
cannot be retrofitted to existing CPUs, Chen et al. [6] pro-
pose instruction sequences that evict the prefetcher state at
each context switch. Such sequences could be extended to
other hardware prefetchers, reducing leakage over security
domains. Similar mitigations have been used for other mi-
croarchitectural attacks [16]. However, due to the number
of different hardware prefetcher implementations and lack
of documentation, implementing such clearing sequences is
cumbersome and prone to errors.
Side-channel-resilient code [3, 18], also called constant-

time or data-oblivious, does not trigger secret-dependent
prefetching without data-dependent prefetchers, therefore
mitigating FetchProbe.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

9 Discussion
This section discusses potentially vulnerable devices, the
applicability to other hardware prefetchers, and potential
further attack scenarios.

Vulnerable Devices. While recent CPUs are unaffected
by MDS and L1TF, we still deem these case studies rele-
vant: These case studies show that ShadowLoad is a viable
primitive to increase the attack surface of such attacks and
needs to be considered when mitigating existing and pos-
sible future attacks. Furthermore, affected processors are
still widely used in the cloud, with AWS and Google Cloud
heavily relying on Broadwell and Skylake CPUs.

Prefetcher Types. While we focus on exploiting the hard-
ware stride prefetcher, the concept applies to other prefetch-
ers that predict memory loads from previous accesses [33]. In
principle, prefetchers with internal state that is not properly
isolated between security domains can be targeted by Shad-
owLoad and FetchProbe. For instance, for stream prefetchers,
prefetches following an attacker-controlled stream direction
could be injected using ShadowLoad. Further, FetchProbe
could guess the offset of a victim memory load and continue
a stream based on this guess. By repeating the victim access
and varying the guess, FetchProbe could learn the target of
the memory load if the prefetcher state is not sufficiently
isolated and aliasing between victim and attackers can be ex-
ploited. Similarly, ShadowLoad could inject prefetches with
replay-based prefetchers like SMS prefetchers. FetchProbe
targeting the SMS prefetcher yields attacks similar to the
attack demonstrated by Schlüter et al. [33]. However, to an-
alyze the capabilities of ShadowLoad and FetchProbe for
certain prefetcher implementations, a comprehensive analy-
sis of the prefetcher implementation is required. Thus, we
limit our analysis to the stride prefetcher and leave other
hardware prefetchers to future work.

Virtualization and TEE. Using QEMU (7.2.0) with KVM,
we perform FetchProbe to extract the load offset within a
VM, with the VM as the victim and the hypervisor as the at-
tacker. Synchronization is achieved through interrupting the
VM, with partial stride training before the interrupt. We ver-
ified that the prefetcher state remains unaffected by context
switching between hypervisor and VM. Our observations
indicate that when the load address and the load instruction
address offset align with the VM’s load, completing the stride
is possible post-context switch.
Furthermore, our investigation extends to AMD Secure

Encrypted Virtualization (SEV). While side-channel attacks
are known within the TEE threat model [34], FetchProbe nar-
rows cache attacks to a granularity of 4 bytes. However, as
shown in Table 2, FetchProbe is limited to pre-Zen 3 microar-
chitectures. Thus, AMD-SEV SNP is currently unaffected. On
Intel CPUs, our L1TF case study shows that ShadowLoad tar-
geting the hypervisor is possible. In summary, ShadowLoad

and FetchProbe transcent kernel (Section 5.5), hypervisor,
and Trusted Execution Environment (TEE) boundaries.

Hyperthreading. We do not observe leakage when mis-
training on the other hyperthread or on another core. This
aligns with previous works [6, 45] which do not report cross-
hyperthread or even cross-core prefetching.
Further Attack Scenarios. The possibility of bringing

data at rest into the cache is relevant for a wide range of
attacks, making FetchProbe and ShadowLoad powerful at-
tack primitives. ShadowLoad is a generic primitive that can
be used as a replacement for different techniques as used
in Meltdown [26], MDS attacks [36, 44], ÆPICLeak [4], or
Collide+Power [21]. Attacks such as Cache+Time [9] can
also be mounted using ShadowLoad instead of branch pre-
dictors. Moreover, ShadowLoad could improve architectural
race conditions by caching selected data and instructions,
making their execution faster and biasing race conditions.

FetchProbe can be used as a replacement for cross-security-
domain cache attacks such as L1 Prime+Probe [32]. With the
higher granularity, it re-enables attack scenarios of Cache-
Bleed [54], which are not possible since Intel Haswell. Fetch-
Probe can monitor memory accesses similar to MWAIT-
based attacks [55] or TSX-based covert channels [7].

10 Conclusion
In this paper, we showed that we can apply injection-style
techniques known from Spectre and Load Value Injection
attacks to hardware prefetchers. Building on our analysis, we
presented ShadowLoad, a technique for bringing inaccessible
victim data into the cache across security domains. In our
case studies, we demonstrated that ShadowLoad extends the
attack surface of existing microarchitectural attacks such as
Meltdown and Collide+Power and can partially bypass L1TF
mitigations. With StrideRE, we designed a framework to
characterize security-relevant properties of hardware stride
prefetchers automatically. Based on our results, we demon-
strated FetchProbe, a side-channel attack to leak offsets of
memory accesses with sub-cache-line granularity on various
Intel and AMD CPUs. We showed that FetchProbe can leak
secrets from cache-side-channel resilient code and exploit
Spectre gadgets not exploitable using cache attacks. Our at-
tacks show that microarchitectural injection is a powerful
technique not limited to transient-execution attacks.

Acknowledgement
We want to thank the anonymous reviewers and the shepard
Mengjia Yan for their valuable feedback and suggestions.
We also want to thank Andreas Kogler for helping with
experiments. We further thank the Saarbrücken Graduate
School of Computer Science for their funding and support.

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] 2023. AMD SEV-SNP: Strengthening VM Isolation with Integrity Pro-

tection andMore. https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf

[2] 2024. AMD64 Architecture Programmer’s Manual. https:
//www.amd.com/content/dam/amd/en/documents/processor-tech-
docs/programmer-references/24593.pdf

[3] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES. http:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf

[4] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel
Gruss, andMichael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking
Uninitialized Data from the Microarchitecture. In USENIX Security.
https://www.usenix.org/system/files/sec22-borrello.pdf

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. 2019. A Systematic Evaluation of Transient Execu-
tion Attacks and Defenses. In USENIX Security. https://www.usenix
.org/system/files/sec19-canella.pdf Extended classification tree and
PoCs at https://transient.fail/..

[6] Yun Chen, Lingfeng Pei, and Trevor E Carlson. 2023. AfterImage: Leak-
ing control flow data and tracking load operations via the hardware
prefetcher. In ASPLOS. https://dl.acm.org/doi/10.1145/3575693.35757
19

[7] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
2017. Prime+Abort: A Timer-Free High-Precision L3 Cache Attack
using Intel TSX. In USENIX Security Symposium. https://www.usenix
.org/system/files/conference/usenixsecurity17/sec17-disselkoen.pdf

[8] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. 2018. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In ASPLOS. https://dl.acm.org/doi/1
0.1145/3173162.3173204

[9] Lukas Gerlach, Daniel Weber, Ruiyi Zhang, and Michael Schwarz.
2023. A Security RISC: Microarchitectural Attacks on Hardware RISC-
V CPUs. In S&P. https://ieeexplore.ieee.org/document/10179399

[10] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. 2016. Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR. In CCS. https://dl.acm.org/doi/10.1145/297
6749.2978356

[11] Daniel Gruss, Clémentine Maurice, KlausWagner, and StefanMangard.
2016. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.
https://dl.acm.org/doi/10.1007/978-3-319-40667-1_14

[12] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level Caches.
In USENIX Security Symposium. https://www.usenix.org/system/files/
conference/usenixsecurity15/sec15-paper-gruss.pdf

[13] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2022.
Adversarial prefetch: New cross-core cache side channel attacks. In
S&P. https://ieeexplore.ieee.org/document/9833692

[14] Lorenz Hetterich and Michael Schwarz. 2022. Branch Different - Spec-
tre Attacks on Apple Silicon. In DIMVA. https://dl.acm.org/doi/10.10
07/978-3-031-09484-2_7

[15] Intel. 2018. Indirect Branch Restricted Speculation. https://www.in
tel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-
restricted-speculation.html

[16] Intel. 2021. Microarchitectural Data Sampling. https://www.intel.co
m/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/intel-analysis-
microarchitectural-data-sampling.html

[17] Intel. 2023. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3 (3A, 3B & 3C): System Programming Guide. https:
//cdrdv2.intel.com/v1/dl/getContent/671447

[18] Intel Corporation. 2020. Guidelines for Mitigating Tim-
ing Side Channels Against Cryptographic Implementations.

https://www.intel.com/content/www/us/en/developer/articles/tec
hnical/software-security-guidance/secure-coding/mitigate-timing-
side-channel-crypto-implementation.html

[19] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. 2022. Kasper: Scanning for Generalized Transient
Execution Gadgets in the Linux Kernel. In NDSS. https://www.ndss-
symposium.org/wp-content/uploads/2022-221-paper.pdf

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In S&P. https://ieeexplore.ieee.org/
document/8835233

[21] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin
Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard. 2023.
Collide+Power: Leaking Inaccessible Data with Software-based Power
Side Channels. In USENIX Security. https://www.usenix.org/system/fi
les/usenixsecurity23-kogler.pdf

[22] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
2020. TagBleed: Breaking KASLR on the Isolated Kernel Address Space
Using Tagged TLBs. In EuroS&P. https://ieeexplore.ieee.org/docume
nt/9230388

[23] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch
Attacks through Power and Time. In USENIX Security. https://www.
usenix.org/system/files/sec22-lipp.pdf

[24] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. 2016. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium. https://www.usenix.org/sys
tem/files/conference/usenixsecurity16/sec16_paper_lipp.pdf

[25] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Cather-
ine Easdon, Claudio Canella, and Daniel Gruss. 2020. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In S&P. https:
//ieeexplore.ieee.org/document/9519416

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Read-
ing Kernel Memory from User Space. In USENIX Security Sympo-
sium. https://www.usenix.org/system/files/conference/usenixsecurit
y18/sec18-lipp.pdf

[27] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
2022. Frequency throttling side-channel attack. In CCS. https://dl.a
cm.org/doi/10.1145/3548606.3560682

[28] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
2015. Last-Level Cache Side-Channel Attacks are Practical. In S&P.
https://ieeexplore.ieee.org/document/7163050

[29] LKML. 2018. Re: Linux 4.18.1. https://lkml.iu.edu/hypermail/linux/ke
rnel/1808.2/00177.html

[30] LKML. 2018. x86/pti updates for 4.16. http://lkml.iu.edu/hypermail/li
nux/kernel/1801.3/03399.html

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: the Case of AES. In CT-RSA. https://dl.acm.o
rg/doi/10.1007/11605805_1

[32] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan.
https://papers.freebsd.org/2005/cperciva-cache_missing

[33] Till Schlüter, Amit Choudhari, Lorenz Hetterich, Leon Trampert,
Hamed Nemati, Ahmad Ibrahim, Michael Schwarz, Christian Rossow,
and Nils Ole Tippenhauer. 2023. FetchBench: Systematic Identifica-
tion and Characterization of Proprietary Prefetchers. In CCS. https:
//dl.acm.org/doi/10.1145/3576915.3623124

[34] Michael Schwarz and Daniel Gruss. 2020. How Trusted Execution
Environments Fuel Research on Microarchitectural Attacks. IEEE
Security & Privacy (2020). https://ieeexplore.ieee.org/document/910
7096

[35] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Flo-
rian Kargl, and Daniel Gruss. 2020. ConTExT: A Generic Approach for

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.usenix.org/system/files/sec22-borrello.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://dl.acm.org/doi/10.1145/3575693.3575719
https://dl.acm.org/doi/10.1145/3575693.3575719
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-disselkoen.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-disselkoen.pdf
https://dl.acm.org/doi/10.1145/3173162.3173204
https://dl.acm.org/doi/10.1145/3173162.3173204
https://ieeexplore.ieee.org/document/10179399
https://dl.acm.org/doi/10.1145/2976749.2978356
https://dl.acm.org/doi/10.1145/2976749.2978356
https://dl.acm.org/doi/10.1007/978-3-319-40667-1_14
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://ieeexplore.ieee.org/document/9833692
https://dl.acm.org/doi/10.1007/978-3-031-09484-2_7
https://dl.acm.org/doi/10.1007/978-3-031-09484-2_7
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-analysis-microarchitectural-data-sampling.html
https://cdrdv2.intel.com/v1/dl/getContent/671447
https://cdrdv2.intel.com/v1/dl/getContent/671447
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.ndss-symposium.org/wp-content/uploads/2022-221-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-221-paper.pdf
https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://www.usenix.org/system/files/usenixsecurity23-kogler.pdf
https://www.usenix.org/system/files/usenixsecurity23-kogler.pdf
https://ieeexplore.ieee.org/document/9230388
https://ieeexplore.ieee.org/document/9230388
https://www.usenix.org/system/files/sec22-lipp.pdf
https://www.usenix.org/system/files/sec22-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://ieeexplore.ieee.org/document/9519416
https://ieeexplore.ieee.org/document/9519416
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://dl.acm.org/doi/10.1145/3548606.3560682
https://dl.acm.org/doi/10.1145/3548606.3560682
https://ieeexplore.ieee.org/document/7163050
https://lkml.iu.edu/hypermail/linux/kernel/1808.2/00177.html
https://lkml.iu.edu/hypermail/linux/kernel/1808.2/00177.html
http://lkml.iu.edu/hypermail/linux/kernel/1801.3/03399.html
http://lkml.iu.edu/hypermail/linux/kernel/1801.3/03399.html
https://dl.acm.org/doi/10.1007/11605805_1
https://dl.acm.org/doi/10.1007/11605805_1
https://papers.freebsd.org/2005/cperciva-cache_missing
https://dl.acm.org/doi/10.1145/3576915.3623124
https://dl.acm.org/doi/10.1145/3576915.3623124
https://ieeexplore.ieee.org/document/9107096
https://ieeexplore.ieee.org/document/9107096

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

Mitigating Spectre. In NDSS. https://www.ndss-symposium.org/wp-
content/uploads/2020/02/24271-paper.pdf

[36] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In CCS. https://dl.acm.org
/doi/10.1145/3319535.3354252

[37] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In ESORICS.
https://dl.acm.org/doi/10.1007/978-3-030-29959-0_14

[38] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. 2021. Speculative Dereferencing of Registers: Reviving Fore-
shadow. In FC. https://link.springer.com/chapter/10.1007/978-3-662-
64322-8_15

[39] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and
Junbeom Hur. 2018. Unveiling Hardware-based Data Prefetcher, a
Hidden Source of Information Leakage. In CCS. https://dl.acm.org/d
oi/10.1145/3243734.3243736

[40] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Reg-
ister State using Microarchitectural Side-Channels. arXiv:1806.07480
(2018). https://arxiv.org/abs/1806.07480

[41] Ke Sun, Rodrigo Branco, and Kekai Hu. 2019. A New
Memory Type Against Speculative Side Channel Attacks.
https://github.com/IntelSTORMteam/Papers/blob/main/2019-A_N
ew_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf

[42] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security Symposium. https://www.usenix.org/system/files/conference
/usenixsecurity18/sec18-van_bulck.pdf

[43] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and
Frank Piessens. 2020. LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In S&P. https://ieeexplore.i
eee.org/document/9152763

[44] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2019. RIDL: Rogue In-flight Data Load. In S&P. https://ieeexplore.iee
e.org/document/8835281

[45] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,
Grant Garrett-Grossman, Adam Morrison, Christopher W Fletcher,
and David Kohlbrenner. 2022. Augury: Using data memory-dependent
prefetchers to leak data at rest. In S&P. https://ieeexplore.ieee.org/do
cument/9833570

[46] Gregory Vish. 2018. l1tf-poc. https://github.com/gregvish/l1tf-poc
[47] Vish Viswanathan. 2014. Disclosure of Hardware Prefetcher Control

on Some Intel Processors. https://web.archive.org/web/20151114
175224/https://software.intel.com/en-us/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors

[48] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael Abu-Ghazaleh,
Srikanth V Krishnamurthy, Edward JM Colbert, and Paul Yu. 2019.
Unveiling your keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries. In NDSS. https://www.ndss-symposium.org/wp-
content/uploads/2019/02/ndss2019_05B-3_Wang_paper.pdf

[49] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. 2022. Hertzbleed:
Turning Power Side-Channel Attacks Into Remote Timing Attacks on
x86. In USENIX Security Symposium. https://www.usenix.org/system/
files/sec22-wang-yingchen.pdf

[50] OfirWeisse, Jo Van Bulck,MarinaMinkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch,
and Yuval Yarom. 2018. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. https://foreshad
owattack.eu/foreshadow-NG.pdf

[51] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano
Giuffrida. 2024. InSpectre Gadget: Inspecting the residual attack
surface of cross-privilege Spectre v2. In USENIX Security. https:
//www.usenix.org/system/files/usenixsecurity24-wiebing.pdf

[52] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. 2020. SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities. In NDSS. https://www.ndss-symposium.or
g/wp-content/uploads/2020/02/23105-paper.pdf

[53] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security
Symposium. https://www.usenix.org/system/files/conference/usenixs
ecurity14/sec14-paper-yarom.pdf

[54] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed:
A Timing Attack on OpenSSL Constant Time RSA. JCEN (2017).
https://link.springer.com/chapter/10.1007/978-3-662-53140-2_17

[55] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. 2023.
(M)WAIT for It: Bridging the Gap between Microarchitectural and
Architectural Side Channels. In USENIX Security. https://www.usenix
.org/system/files/usenixsecurity23-zhang-ruiyi.pdf

[56] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsa-
tiansup, Daniel Genkin, and Yuval Yarom. 2023. BunnyHop: Ex-
ploiting the Instruction Prefetcher. In USENIX Security Sympo-
sium. https://www.usenix.org/system/files/usenixsecurity23-zhang-
zhiyuan-bunnyhop.pdf

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24271-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24271-paper.pdf
https://dl.acm.org/doi/10.1145/3319535.3354252
https://dl.acm.org/doi/10.1145/3319535.3354252
https://dl.acm.org/doi/10.1007/978-3-030-29959-0_14
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_15
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_15
https://dl.acm.org/doi/10.1145/3243734.3243736
https://dl.acm.org/doi/10.1145/3243734.3243736
https://arxiv.org/abs/1806.07480
https://github.com/IntelSTORMteam/Papers/blob/main/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://github.com/IntelSTORMteam/Papers/blob/main/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://ieeexplore.ieee.org/document/9152763
https://ieeexplore.ieee.org/document/9152763
https://ieeexplore.ieee.org/document/8835281
https://ieeexplore.ieee.org/document/8835281
https://ieeexplore.ieee.org/document/9833570
https://ieeexplore.ieee.org/document/9833570
https://github.com/gregvish/l1tf-poc
https://web.archive.org/web/20151114175224/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://web.archive.org/web/20151114175224/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://web.archive.org/web/20151114175224/https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05B-3_Wang_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05B-3_Wang_paper.pdf
https://www.usenix.org/system/files/sec22-wang-yingchen.pdf
https://www.usenix.org/system/files/sec22-wang-yingchen.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://www.usenix.org/system/files/usenixsecurity24-wiebing.pdf
https://www.usenix.org/system/files/usenixsecurity24-wiebing.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23105-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23105-paper.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://link.springer.com/chapter/10.1007/978-3-662-53140-2_17
https://www.usenix.org/system/files/usenixsecurity23-zhang-ruiyi.pdf
https://www.usenix.org/system/files/usenixsecurity23-zhang-ruiyi.pdf
https://www.usenix.org/system/files/usenixsecurity23-zhang-zhiyuan-bunnyhop.pdf
https://www.usenix.org/system/files/usenixsecurity23-zhang-zhiyuan-bunnyhop.pdf

ShadowLoad: Injecting State into Hardware Prefetchers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
Our artifacts demonstrate how our hardware prefetcher at-
tacks FetchProbe and ShadowLoad work. The artifacts in-
clude our tool StrideRE and proof-of-concepts from the paper
and allow reproduction of their results. The artifacts require
a 12th or 13th-generation Intel processor and an Intel pro-
cessor affected by Meltdown (e.g., Skylake or Coffee Lake).
The artifacts only work on x86_64 Linux and require root
access.

A.2 Artifact check-list (meta-information)
• Hardware: Intel 12th Gen or 13th Gen processor + Intel
processor affected byMeltdown (e.g., Skylake or Coffee Lake)

• Run-time environment: Linux, Root required
• How much disk space required (approximately)?: 1GB
• How much time is needed to prepare workflow (ap-
proximately)?: a few minutes

• Experiments: Python scripts for evaluation are available
• How much time is needed to complete experiments
(approximately)?: about 12 hours to several days (if Collide
+ Power is evaluated)

• Publicly available?: yes
• Code licenses (if publicly available)?:MIT / GPL
• Archived (provide DOI)?: 10.6084/m9.figshare.28381319

A.3 Description
A.3.1 How to access. The artifacts can be obtained in the
following repository: github.com/cispa/ShadowLoad.

A.3.2 Hardware dependencies.
• 12th or 13th-generation Intel processor
• Intel processor affected by Meltdown (e.g., Skylake or
Coffee Lake)

We tested the provided artifacts using an Intel Core i7-
8700k and an Intel Core i9-12900k. Two processors are re-
quired as our provided attacks are fine-tuned for hardware
prefetchers that can cross page boundaries, and other attacks
require processors vulnerable to Meltdown. The former is
only available on newer processors, while the latter is only
available on old Intel processors. Some of the provided ar-
tifacts can be executed with different processors but might
require additional tweaking.

A.3.3 Software dependencies. Linux operating system
(no VM), git, kernel headers, GNU Make, gcc, python3, mat-
plotlib. We used Ubuntu 22.04 as an operating system during
testing. Matplotlib should also be set up work when python3
is executed as root.

A.4 Installation
After downloading the artifacts, run the com-
pile_and_check.py as root (sudo python3 com-
pile_and_check.py). This script compiles all examples

and kernel modules and should terminate with exit code 0
or provide more information on failure.

A.5 Experiment workflow
Experiments are divided into different directories. Most di-
rectories contain an eval.py script that will automatically
run the experiment and reports the results or stores them in
a directory called out. The expected results and more details
on how each experiment can be run are detailed in the next
section.

A.6 Evaluation and expected results
00_fetch_probe. (5-10 minutes)

The experiment should be executed on a 12th or 13th-
generation Intel processor. The eval.py script must be ex-
ecuted as root. An example output contains the following
lines:

1 (...)

2 times: 0.022398622

3 correct: 32767.0

4 false_positives: 0.0

5 false_negatives: 1.0

6 positives: 16383.5

7 negatives: 16384.5

8 precision: 100.0%

9 recall: 100.0%

10 f-score: 100.0%

11

12 (...)

13 times: 0.043121079

14 correct: 32766.0

15 false_positives: 0.0

16 false_negatives: 2.0

17 positives: 16380.0

18 negatives: 16388.0

19 inv_correct: 32766.0

20 inv_false_positives: 0.0

21 inv_false_negatives: 2.0

22 inv_positives: 16388.0

23 inv_negatives: 16380.0

24 precision: 100.0%

25 recall: 100.0%

26 f-score: 100.0%

27 inv_ precision: 100.0%

28 inv_ recall: 100.0%

29 inv_ f-score: 100.0%

The experiment is successful if the amount of false pos-
itives and false negatives is low. The precision, recall, and
f-score should be comparable to the numbers shown in the
paper but at least 80%.

01_shadow_load. (about 5 minutes)
The experiment should be executed on a 12th or 13th-
generation Intel processor. The eval.py script must be ex-
ecuted as root. After execution, the out directory should
contain, amongst others, the files result_shadowload_1.svg

https://github.com/cispa/ShadowLoad

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Lorenz Hetterich et al.

and result_shadowload_kernel_1.svg. These images should
show cache hits starting with two accesses:

02_stride_re. (up to 12 hours)
We recommend using a 12th or 13th-generation Intel
processor for this experiment. The eval.py script must be
executed as root. This experiment may take up to 12 hours
to complete. After execution, the tests/out directory should
contain many files. For instance, the file
test_prefetch_both_collisions_mem_aligned_2_rdtsc,kernel,-
DEVAL,-DACCESS_MEMORY.svg which visualizes the
relevant bits in the accessed address for userspace to kernel
mistraining of the hardware stride prefetcher with two
training accesses and an aligned trigger access in the kernel.
This should look comparable to this example on 12th or
13th-generation Intel processors:

03_base64. (2 - 10 seconds)
The experiment should be executed on a 12th or 13th-
generation Intel processor. The eval.py script can be executed
as an unprivileged user. The experiment is successful if the
incorrect rate is low (it should be below 30%). The incorrect
rate describes the number of runs out of 1000, where at least
one bit was incorrect.

Sample output:
1 (...)

2 leakage: 87104.25 bit/sec.

3 incorrect: 194 / 1000 (19.40%

4 unknown left: 16.56575682382134

5 invokations : 1238.1042183622828

04_meltdown. (30-90 minutes)
The experiment should be executed on an Intel processor
vulnerable to Meltdown. Page-table-isolation should be dis-
abled (mitigations=off or nopti kernel parameter).
On Ubuntu 22.04, the kernel parameters can be changed
by editing the GRUB_CMDLINE_LINUX_DEFAULT configu-
ration in /etc/default/grub and executing update-grub after-
ward. The analyze.py script (run by the eval.py script) further
enables huge pages using sysctl -w vm.nr_hugepages=50. The
script must be modified if this command is does not apply
to the system. The eval.py script must be executed as root.
The amount of correct bytes should be at least 50% (50% is
better than random guessing which would be 1

255).

05_spectre. (approximately 3 minutes)
The experiment should be executed on a 12th or 13th-
generation Intel processor. The eval.py script must be exe-
cuted as root. The experiment is successful if the amount of
correct bytes is high (should be at least 80%).

Sample output:
1 (...)

2 rate : 18.2KB/s

3 correct: 99.4%

4 --------------------

5 (...)

06_collide_power. (several days)
We included the Collide+Power victim for complete-
ness. It can be evaluated using the open source tool by
Kogler et al.: github.com/0xhilbert/rda. Further instruc-
tions are included in the README.md in the repository at
06_collide_power/runner/user/README.md.̧

A.7 Notes
If anything fails, ensure that no kernel modules from other
experiments are still loaded.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-and-badging-current

• https://cTuning.org/ae

https://github.com/0xhilbert/rda
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	2.1 Caches and Cache Attacks
	2.2 Collide+Power
	2.3 Prefetcher
	2.4 Virtualization and Virtual Machines
	2.5 Transient-Execution Attacks

	3 Hardware-Prefetcher Attack Primitives
	3.1 ShadowLoad
	3.2 FetchProbe

	4 Reverse-engineering Prefetchers
	4.1 Overview
	4.2 Aliasing
	4.3 Prefetcher Characteristics
	4.4 Implementation

	5 Evaluation
	5.1 StrideRE Evaluation
	5.2 ShadowLoad Evaluation
	5.3 Prefetchers of the Apple M1 and M2 CPUs
	5.4 Monitoring Memory Accesses with FetchProbe
	5.5 Monitoring Memory Offset with FetchProbe

	6 Case Studies
	6.1 Re-enabling L1TF using ShadowLoad
	6.2 ShadowLoad with MDS
	6.3 Collide+Power with ShadowLoad
	6.4 FetchProbe on Side-Channel-Hardened Base64
	6.5 FetchProbe with Spectre

	7 Related Work
	8 Countermeasures
	9 Discussion
	10 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes
	A.8 Methodology

